Effect of sprint and strength training on glucoregulatory hormones: Effect of advanced age

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Autores
SELLAMI, Maha
ABDERRAHMAN, Abderraouf Ben
KEBSI, Wiem
ZOUHAL, Hassane
Citação
EXPERIMENTAL BIOLOGY AND MEDICINE, v.242, n.1, p.113-123, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The aim of this study was to examine the effect of high-intensity sprint and strength training (HISST) on glucoregulatory hormones in young (20 years) and middle-aged (40 years) men. Thirty-six moderately trained men participated as volunteers in this study. After medical examination, eligible subjects were randomly assigned to one of four groups according to their age: a young training group (21.3 +/- 1.3 yrs, YT, n = 9), a young control group (21.4 +/- 1.7 yrs, YC, n = 9), a middle-aged training group (40.7 +/- 1.8 yrs, AT, n = 9), and a middle-aged control group (40.5 +/- 1.8 yrs, AC, n = 9). YT and AT participated in HISST for 13 weeks. Before and after HISST, all participants performed the Wingate Anaerobic Test (WAnT). Blood samples were collected at rest, after warm-up (50% VO2max), immediately post-WAnT, and 10 min post-WAnT. Before HISST, we observed significantly higher (P < 0.05) glucose concentrations in AT (5.86 +/- 0.32 mmol. L-1) compared to YT (4.24 +/- 0.79 mmol. L-1) at rest, and in response to WAnT (6.56 +/- 0.63 mmol. L-1 vs. 5.33 +/- 0.81 mmol. L-1). Cortisol levels were significantly higher (P< 0.05) in AT than in YT in response to WAnT (468 +/- 99.50 ng. mL(-1) vs. 382 +/- 64.34 ng. mL(-1)). Catecholamine levels measured at rest and in response to WAnT rose in a similar fashion. After HISST, this ""age effect'' disappeared at rest and in response to exercise in the trained groups (YT and AT). Changes in hormone concentrations with intense training are due to adaptive changes in various tissues, especially in the skeletal muscle and liver in trained subjects. HISST may, at least in part, counteract the negative ""age effect'' on glucose metabolism.
Palavras-chave
Hypothalamic-pituitary-adrenal axis, catecholamine, glucose metabolism, cortisol, Wingate-test, aging
Referências
  1. Adams K, 1992, J APPL SPORT SCI RES, V6, P36
  2. BAECKE JAH, 1982, AM J CLIN NUTR, V36, P936
  3. CADEFAU J, 1990, ACTA PHYSIOL SCAND, V140, P341, DOI 10.1111/j.1748-1716.1990.tb09008.x
  4. Cadore EL, 2010, INT J SPORTS MED, V31, P689, DOI 10.1055/s-0030-1261895
  5. Chwalbinska-Moneta J, 2005, J PHYSIOL PHARMACOL, V56, P87
  6. COLMAN E, 1995, METABOLISM, V44, P1502, DOI 10.1016/0026-0495(95)90153-1
  7. Cormie P, 2010, MED SCI SPORT EXER, V42, P1582, DOI 10.1249/MSS.0b013e3181d2013a
  8. Cox JH, 1999, J APPL PHYSIOL, V86, P2019
  9. DeNino WF, 2001, DIABETES CARE, V24, P925, DOI 10.2337/diacare.24.5.925
  10. DEUSTER PA, 1989, METABOLISM, V38, P141, DOI 10.1016/0026-0495(89)90253-9
  11. DURNIN JVGA, 1974, BRIT J NUTR, V32, P77, DOI 10.1079/BJN19740060
  12. Elahi D, 2000, EUR J CLIN NUTR, V54, pS112
  13. Gibala MJ, 2006, J PHYSIOL-LONDON, V575, P901, DOI 10.1113/jphysiol.2006.112094
  14. Han XX, 1998, AM J PHYSIOL-ENDOC M, V274, pE700
  15. Hancox RJ, 2011, DIABETOL METAB SYNDR, V3, DOI 10.1186/1758-5996-3-23
  16. Holten MK, 2004, DIABETES, V53, P294, DOI 10.2337/diabetes.53.2.294
  17. Houmard JA, 2004, J APPL PHYSIOL, V96, P101, DOI 10.1152/japplphysiol.00707.2003
  18. Karavirta L, 2011, AM J CLIN NUTR, V21, P402
  19. KIRWAN JP, 1993, J GERONTOL, V48, pM84
  20. Kjaer M, 1992, Exerc Sport Sci Rev, V20, P161
  21. Kjaer M, 1998, EUR J APPL PHYSIOL O, V77, P195
  22. Kjaer M, 1998, ADV EXP MED BIOL, V441, P117
  23. Korhonen MT, 2014, NUTR PERFORMANCE MAS
  24. Kotzamanidis C, 2005, J STRENGTH COND RES, V19, P369
  25. Kraemer WJ, 2002, MED SCI SPORT EXER, V34, P364
  26. MANEATIS T, 1982, J AM GERIATR SOC, V30, P178
  27. Manetta J, 2002, AM J PHYSIOL, V5, pE929
  28. Manetta K, 2005, METABOLISM, V54, P1411, DOI 10.1016/j.metabol.2004.12.002
  29. Marliss EB, 2002, DIABETES, V51, pS271, DOI 10.2337/diabetes.51.2007.S271
  30. MATTHEWS DR, 1985, DIABETOLOGIA, V28, P412, DOI 10.1007/BF00280883
  31. Muniyappa R, 2008, AM J PHYSIOL-ENDOC M, V294, pE15, DOI 10.1152/ajpendo.00645.2007
  32. OHKUWA T, 1984, EUR J APPL PHYSIOL O, V53, P213, DOI 10.1007/BF00776592
  33. Ratamess NA, 2009, MED SCI SPORT EXER, V41, P687, DOI 10.1249/MSS.0b013e3181915670
  34. Reaburn P, 1997, J STRENGTH COND RES, V11, P256
  35. Sandvei M, 2012, ARCH PHYSIOL BIOCHEM, V118, P139, DOI 10.3109/13813455.2012.677454
  36. SEALS DR, 1984, J APPL PHYSIOL, V57, P1024
  37. Sellami M, 2014, EUR J APPL PHYSIOL, V114, P969, DOI 10.1007/s00421-014-2828-7
  38. Sigal RJ, 1996, DIABETES, V45, P148, DOI 10.2337/diabetes.45.2.148
  39. Singh Bhawna, 2010, World J Diabetes, V1, P36, DOI 10.4239/wjd.v1.i2.36
  40. Sousa M, 2014, SCAND J MED SCI SPOR, V24, P57
  41. Strobel G, 1999, MED SCI SPORT EXER, V31, P560, DOI 10.1097/00005768-199904000-00011
  42. Tessari P, 2000, NUTR REV, V58, P11
  43. VANDEWALLE H, 1985, EUR J APPL PHYSIOL O, V54, P222, DOI 10.1007/BF02335934
  44. Wahl P, 2010, GROWTH HORM IGF RES, V20, P380, DOI 10.1016/j.ghir.2010.08.001
  45. Wittert GA, 1996, MED SCI SPORT EXER, V28, P1015, DOI 10.1097/00005768-199608000-00011
  46. Young WB, 2006, INTJ SPORT PHYSIOL, V1, P74
  47. Zhao ZY, 2003, STEROIDS, V68, P133, DOI 10.1016/S0039-128X(02)00167-8
  48. Zouhal H, 1999, INT J SPORTS MED, V20, P343, DOI 10.1055/s-2007-971142
  49. Zouhal H, 1998, INT J SPORTS MED, V19, P172, DOI 10.1055/s-2007-971899
  50. Zouhal H, 2008, SPORTS MED, V38, P401, DOI 10.2165/00007256-200838050-00004
  51. Zouhal H, 2009, J SCI MED SPORT, V12, P652, DOI 10.1016/j.jsams.2008.03.003