Plasmodium simium: Population Genomics Reveals the Origin of a Reverse Zoonosis

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Autores
OLIVEIRA, Thais C. de
RODRIGUES, Priscila T.
EARLY, Angela M.
BUERY, Julyana C.
BUENO, Marina G.
CATAO-DIAS, Jose L.
CERUTTI, Crispim
RONA, Luisa D. P.
NEAFSEY, Daniel E.
Citação
JOURNAL OF INFECTIOUS DISEASES, v.224, n.11, p.1950-1961, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background. The population history of Plasmodium simium, which causes malaria in sylvatic Neotropical monkeys and humans along the Atlantic Coast of Brazil, remains disputed. Genetically diverse P vivax populations from various sources, including the lineages that founded the species P simium, are thought to have arrived in the Americas in separate migratory waves. Methods. We use population genomic approaches to investigate the origin and evolution of P simium. Results. We find a minimal genome-level differentiation between P simium and present-day New World P vivax isolates, consistent with their common geographic origin and subsequent divergence on this continent. The meagre genetic diversity in P simium samples from humans and monkeys implies a recent transfer from humans to non-human primates - a unique example of malaria as a reverse zoonosis of public health significance. Likely genomic signatures of P simium adaptation to new hosts include the deletion of > 40% of a key erythrocyte invasion ligand, PvRBP2a, which may have favored more efficient simian host cell infection. Conclusions. New World P vivax lineages that switched from humans to platyrrhine monkeys founded the P simium population that infects nonhuman primates and feeds sustained human malaria transmission in the outskirts of major cities.
Palavras-chave
Plasmodium simium, Neotropical monkeys, reverse zoonosis
Referências
  1. Araujo MS, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-180
  2. Auburn Sarah, 2016, Wellcome Open Res, V1, P4, DOI 10.12688/wellcomeopenres.9876.1
  3. Brasil P, 2017, LANCET GLOB HEALTH, V5, pE1038, DOI 10.1016/S2214-109X(17)30333-9
  4. Bueno MG, 2012, THESIS FACULTY VET M
  5. Buery JC, 2017, MALARIA J, V16, DOI 10.1186/s12936-017-2080-9
  6. Cerutti C, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-33
  7. Collins WE, 2005, AM J TROP MED HYG, V73, P644, DOI 10.4269/ajtmh.2005.73.644
  8. Cormier Loretta A., 2010, Diversity, V2, P256
  9. Cowell AN, 2017, MBIO, V8, DOI [10.1128/mBio.02257-16, 10.1128/mbio.02257-16]
  10. Culleton R, 2012, INT J PARASITOL, V42, P1091, DOI 10.1016/j.ijpara.2012.08.005
  11. da FONSECA FLAVIO, 1951, MEM INST OSWALDO CRUZ, V49, P543, DOI 10.1590/S0074-02761951000100008
  12. de Oliveira TC, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005824
  13. Deane L.M., 1984, Memorias do Instituto Oswaldo Cruz, V79, P461, DOI 10.1590/S0074-02761984000400011
  14. DEANE LM, 1966, B WORLD HEALTH ORGAN, V35, P805
  15. DEANE LM, 1992, MEM I OSWALDO CRUZ, V87, P1, DOI 10.1590/S0074-02761992000700001
  16. Ferreira MU, 2019, METHODS MOL BIOL, V2013, P57, DOI 10.1007/978-1-4939-9550-9_4
  17. Ferreira MU, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1335-1
  18. Gruszczyk J, 2016, P NATL ACAD SCI USA, V113, pE191, DOI 10.1073/pnas.1516512113
  19. Harcourt AH, 2016, P NATL ACAD SCI USA, V113, P8072, DOI 10.1073/pnas.1601068113
  20. Haubold B, 1998, GENETICS, V150, P1341
  21. Hupalo DN, 2016, NAT GENET, V48, P953, DOI 10.1038/ng.3588
  22. Kanjee U, 2018, CURR OPIN MICROBIOL, V46, P109, DOI 10.1016/j.mib.2018.10.002
  23. Knuepfer E, 2019, PLOS PATHOG, V15, DOI 10.1371/journal.ppat.1007809
  24. Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300
  25. Li J, 2001, EMERG INFECT DIS, V7, P35, DOI 10.3201/eid0701.010105
  26. Lim CS, 2005, P NATL ACAD SCI USA, V102, P15523, DOI 10.1073/pnas.0507413102
  27. Liu WM, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4346
  28. Loy DE, 2018, P NATL ACAD SCI USA, V115, pE8450, DOI 10.1073/pnas.1810053115
  29. de Alvarenga DAM, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0606-6
  30. Marrelli MT, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-127
  31. Martinelli A, 2018, PARASITOLOGY, V145, P41, DOI 10.1017/S0031182016001335
  32. Molina-Cruz A, 2020, P NATL ACAD SCI USA, V117, P2597, DOI 10.1073/pnas.1917042117
  33. Mourier T, BIORXIV841171
  34. Multini LC, 2019, TRENDS PARASITOL, V35, P383, DOI 10.1016/j.pt.2019.03.009
  35. Patterson N, 2012, GENETICS, V192, P1065, DOI 10.1534/genetics.112.145037
  36. Pearson RD, 2016, NAT GENET, V48, P959, DOI 10.1038/ng.3599
  37. Petr M, 2019, BIOINFORMATICS, V35, P3194, DOI 10.1093/bioinformatics/btz030
  38. Proto WR, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12294-3
  39. Prugnolle F, 2013, P NATL ACAD SCI USA, V110, P8123, DOI 10.1073/pnas.1306004110
  40. Duarte AMRD, 2008, ACTA TROP, V107, P179, DOI 10.1016/j.actatropica.2008.05.020
  41. Rodrigues PT, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19554-0
  42. de Abreu FVS, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007906
  43. Schaffner SF, 2018, MALARIA J, V17, DOI 10.1186/s12936-018-2349-7
  44. Schrago CG, 2003, MOL BIOL EVOL, V20, P1620, DOI 10.1093/molbev/msg172
  45. Sinka ME, 2010, PARASITE VECTOR, V3, DOI 10.1186/1756-3305-3-72
  46. Tachibana SI, 2012, NAT GENET, V44, P1051, DOI 10.1038/ng.2375
  47. Tazi L, 2011, INFECT GENET EVOL, V11, P209, DOI 10.1016/j.meegid.2010.08.007
  48. van Dorp L, 2020, MOL BIOL EVOL, V37, P773, DOI 10.1093/molbev/msz264
  49. Warncke JD, 2016, MICROBIOL MOL BIOL R, V80, P905, DOI 10.1128/MMBR.00014-16
  50. Yamasaki T, 2011, J MED PRIMATOL, V40, P392, DOI 10.1111/j.1600-0684.2011.00498.x