Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis

Carregando...
Imagem de Miniatura
Citações na Scopus
64
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
CHAGAS, Carolina Romeiro Fernandes
VALKIUNAS, Gediminas
GUIDA, Fernanda Junqueira Vaz
RODRIGUES, Priscila Thihara
Citação
MALARIA JOURNAL, v.16, article ID 83, 20p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The role of zoos in conservation programmes has increased significantly in last decades, and the health of captive animals is essential to guarantee success of such programmes. However, zoo birds suffer from parasitic infections, which often are caused by malaria parasites and related haemosporidians. Studies determining the occurrence and diversity of these parasites, aiming better understanding infection influence on fitness of captive birds, are limited. Methods: In 2011-2015, the prevalence and diversity of Plasmodium spp. and Haemoproteus spp. was examined in blood samples of 677 captive birds from the Sao Paulo Zoo, the largest zoo in Latin America. Molecular and microscopic diagnostic methods were used in parallel to detect and identify these infections. Results: The overall prevalence of haemosporidians was 12.6%. Parasites were mostly detected by the molecular diagnosis, indicating that many birds harbour subclinical or abortive infections. In this project, birds of 17 orders (almost half of all the orders currently accepted in taxonomy of birds), 29 families, and 122 species, were tested, detecting positive individuals in 27% of bird species. Birds from the Anatidae were the most prevalently infected (64.7% of all infected animals). In all, infections with parasites of the genus Plasmodium (overall prevalence 97.6%) predominated when compared to those of the genus Haemoproteus (2.4%). In total, 14 cytochrome b (cytb) lineages of Plasmodium spp. and 2 cytb lineages of Haemoproteus spp. were recorded. Eight lineages were new. One of the reported lineages was broad generalist while others were reported in single or a few species of birds. Molecular characterization of Haemoproteus ortalidum was developed. Conclusion: This study shows that many species of birds are at risk in captivity. It is difficult to stop haemosporidian parasite transmission in zoos, but is possible to reduce the infection rate by treating the infected animals or/and while keeping them in facilities free from mosquitoes. Protocols of quarantine should be implemented whenever an animal is transferred between bird maintaining institutions. This is the first survey of haemosporidians in captive birds from different orders maintained in zoos. It is worth emphasizing the necessity of applying practices to control these parasites in management and husbandry of animals in captivity.
Palavras-chave
Avian malaria, Plasmodium, Haemoproteus, Captive birds, Zoo, Conservation
Referências
  1. Asghar M, 2015, SCIENCE, V347, P436, DOI 10.1126/science.1261121
  2. Atkinson CT, 2014, GLOBAL CHANGE BIOL, V20, P2426, DOI 10.1111/gcb.12535
  3. Atkinson CT, 2008, PARASITIC DIS WILD B
  4. Bandelt HJ, 1999, MOL BIOL EVOL, V16, P37
  5. Beadell JS, 2009, INT J PARASITOL, V39, P257, DOI 10.1016/j.ijpara.2008.06.005
  6. Belo NO, 2009, PREV VET MED, V88, P220, DOI 10.1016/j.prevetmed.2008.09.007
  7. Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x
  8. Bueno MG, 2010, VET PARASITOL, V173, P123, DOI 10.1016/j.vetpar.2010.06.026
  9. Bukauskaite D, 2016, PARASITOLOGY, V143, P1748, DOI 10.1017/S0031182016001426
  10. Bukauskaite D, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0910-6
  11. Motta ROC, 2013, PEERJ, V1, DOI 10.7717/peerj.45
  12. Ceretti W, 2016, J ARTHROPOD-BORNE DI, V10, P102
  13. Clark NJ, 2014, INT J PARASITOL, V44, P329, DOI 10.1016/j.ijpara.2014.01.004
  14. Clayton DH, 2003, TANGLED TREES: PHYLOGENY, COSPECIATION AND COEVOLUTION, P310
  15. Dimitrov D, 2015, EXP PARASITOL, V148, P1, DOI 10.1016/j.exppara.2014.11.005
  16. Dinhopl N, 2015, PARASITOL RES, V114, P1455, DOI 10.1007/s00436-015-4328-z
  17. Dinhopl N, 2011, AVIAN PATHOL, V40, P315, DOI 10.1080/03079457.2011.569533
  18. Dodge M, 2013, J PARASITOL, V99, P548, DOI 10.1645/GE-3134.1
  19. Durrant KL, 2006, ORNITHOL MONOGR, P98
  20. EAZA, 2013, MOD ZOO FDN MAN DEV
  21. Escalante AA, 1998, P NATL ACAD SCI USA, V95, P8124, DOI 10.1073/pnas.95.14.8124
  22. Chagas CRF, 2016, PARASITOL RES, V115, P1443, DOI 10.1007/s00436-015-4878-0
  23. Fernandes Chagas Carolina Romeiro, 2013, International Journal for Parasitology Parasites and Wildlife, V2, P286, DOI 10.1016/j.ijppaw.2013.09.008
  24. Ferrell ST, 2007, J ZOO WILDLIFE MED, V38, P309, DOI 10.1638/1042-7260(2007)038[0309:FHIIMA]2.0.CO;2
  25. Gabaldon A., 1978, Boletin de la Direccion de Malariologia y Saneamiento Ambiental, V18, P165
  26. GODFREY RD, 1987, J WILDLIFE DIS, V23, P558
  27. Gonzalez AD, 2015, PARASITOL INT, V64, P48, DOI 10.1016/j.parint.2015.01.007
  28. Grilo ML, 2016, AVIAN PATHOL, V45, P393, DOI 10.1080/03079457.2016.1149145
  29. Hellgren O, 2004, J PARASITOL, V90, P797, DOI 10.1645/GE-184R1
  30. Hellgren O, 2007, MOL ECOL, V16, P1281, DOI 10.1111/j.1365-294X.2007.03277.x
  31. Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754
  32. Ilgunas M, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1310-x
  33. Ilgunas M, 2013, ZOOTAXA, V3666, P49, DOI 10.11646/zootaxa.3666.1.5
  34. International Union for Conservation of Nature and National Resources, IUCN RED LIST THREAT
  35. Keesing F, 2006, ECOL LETT, V9, P485, DOI 10.1111/j.1461-0248.2006.00885.x
  36. Knowles SCL, 2010, J EVOLUTION BIOL, V23, P557, DOI 10.1111/j.1420-9101.2009.01920.x
  37. Krasnov BR, 2005, OIKOS, V108, P449, DOI 10.1111/j.0030-1299.2005.13551.x
  38. Lacorte GA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057770
  39. LaPointe DA, 2012, ANN NY ACAD SCI, V1249, P211, DOI 10.1111/j.1749-6632.2011.06431.x
  40. Lauron EJ, 2015, PARASITOLOGY, V142, P635, DOI 10.1017/S0031182014001681
  41. Levin II, 2013, CONSERV BIOL, V27, P1366, DOI 10.1111/cobi.12127
  42. Loiseau C, 2012, MOL ECOL, V21, P431, DOI 10.1111/j.1365-294X.2011.05341.x
  43. MacLeod CJ, 2010, ECOL LETT, V13, P516, DOI 10.1111/j.1461-0248.2010.01446.x
  44. Mantilla JS, 2013, J PARASITOL, V99, P662, DOI 10.1645/12-138.1
  45. Martinez J, 2015, BIRD CONSERV INT, V25, P139, DOI 10.1017/S0959270914000227
  46. Martinsen ES, 2007, PARASITOLOGY, V134, P483, DOI 10.1017/S0031182006001922
  47. Marzal A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021905
  48. Merino S, 2008, AUSTRAL ECOL, V33, P329, DOI 10.1111/j.1442-9993.2008.01820.x
  49. Meteorological Institute of Astronomy, GEOPH ATM SCI
  50. Moens MAJ, 2016, J ANIM ECOL, V85, P1234, DOI 10.1111/1365-2656.12550
  51. Moens MAJ, 2016, INT J PARASITOL, V46, P41, DOI 10.1016/j.ijpara.2015.08.001
  52. Mukhin A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159216
  53. Murata K, 2008, J VET MED SCI, V70, P203, DOI 10.1292/jvms.70.203
  54. Neto JM, 2015, PARASITOLOGY, V142, P1183, DOI 10.1017/S0031182015000414
  55. Oakgrove KS, 2014, INT J PARASITOL, V44, P717, DOI 10.1016/j.ijpara.2014.04.011
  56. Olias P, 2011, EMERG INFECT DIS, V17, P950, DOI 10.3201/eid1705.101618
  57. Olney PJ, 2005, BUILDING FUTURE WILD
  58. Pagenkopp KM, 2008, CONSERV GENET, V9, P1577, DOI 10.1007/s10592-007-9497-6
  59. Palinauskas V, 2008, EXP PARASITOL, V120, P372, DOI 10.1016/j.exppara.2008.09.001
  60. Palinauskas V, 2007, ZOOTAXA, P39
  61. Palinauskas V, 2016, INT J PARASITOL, V46, P697, DOI 10.1016/j.ijpara.2016.05.005
  62. Palinauskas V, 2013, PARASITOL INT, V62, P358, DOI 10.1016/j.parint.2013.03.006
  63. Palinauskas V, 2009, EXP PARASITOL, V123, P134, DOI 10.1016/j.exppara.2009.06.012
  64. Panayotova-Pencheva Mariana Stancheva, 2013, Zoologische Garten, V82, P60
  65. Perez-Rodriguez A, 2013, INT J PARASITOL, V43, P381, DOI 10.1016/j.ijpara.2012.12.007
  66. Perez-Tris J, 2005, PARASITOLOGY, V131, P15, DOI 10.1017/S003118200500733X
  67. Rambaut A., FIGTREE TREE FIGURE
  68. Ricklefs RE, 2002, P ROY SOC B-BIOL SCI, V269, P885, DOI 10.1098/rspb.2001.1940
  69. Roos FL, 2015, PARASITOL RES, V114, P3903, DOI 10.1007/s00436-015-4622-9
  70. Santiago-Alarcon D, 2012, BIOL REV, V87, P928, DOI 10.1111/j.1469-185X.2012.00234.x
  71. Scaglione FE, 2016, RES VET SCI, V104, P123, DOI 10.1016/j.rvsc.2015.12.010
  72. Schoener ER, 2014, NEW ZEAL VET J, V62, P189, DOI 10.1080/00480169.2013.871195
  73. Szymanski MM, 2005, J PARASITOL, V91, P768, DOI 10.1645/GE-417R1.1
  74. Vanstreels RET, 2015, VET RES, V46, DOI 10.1186/s13567-015-0160-9
  75. Vanstreels RET, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094994
  76. Thurber MI, 2014, J ZOO WILDLIFE MED, V45, P749, DOI 10.1638/2013-0284.1
  77. Tuten HC, 2011, J AM MOSQUITO CONTR, V27, P111, DOI 10.2987/10-6061.1
  78. Valkiunas G, 2005, AVIAN MALARIA PARASI
  79. Valkiunas G, 2007, PARASITOL RES, V100, P1311, DOI 10.1007/s00436-006-0409-3
  80. Valkiunas G, 2014, PARASITOL RES, V113, P2251, DOI 10.1007/s00436-014-3880-2
  81. van Riper C. III, 1991, Bulletin of the Society for Vector Ecology, V16, P59
  82. Villar CM, 2013, J PARASITOL, V99, P522, DOI 10.1645/12-73.1
  83. Yohannes E, 2009, J ORNITHOL, V150, P287, DOI 10.1007/s10336-008-0349-z