ELIANA FERREIRA MONTEIRO

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais
LIM/49 - Laboratório de Protozoologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 11
  • article 7 Citação(ões) na Scopus
    First Molecular Detection of Polychromophilus Parasites in Brazilian Bat Species
    (2021) MINOZZO, Guilherme Augusto; MATHIAS, Bruno da Silva; RIEDIGER, Irina Nastassja; GUIMARAES, Lilian de Oliveira; ANJOS, Carolina Clares dos; MONTEIRO, Eliana Ferreira; SANTOS, Andrea Pires dos; BIONDO, Alexander Welker; KIRCHGATTER, Karin
    Blood parasites of the Haemosporida order, such as the Plasmodium spp. responsible for malaria, have become the focus of many studies in evolutionary biology. However, there is a lack of molecular investigation of haemosporidian parasites of wildlife, such as the genus Polychromophilus. Species of this neglected genus exclusively have been described in bats, mainly in Europe, Asia, and Africa, but little is known about its presence and genetic diversity on the American continent. Here, we investigated 406 bats from sites inserted in remnant fragments of the Atlantic Forest and Cerrado biomes and urbanized areas from southern Brazil for the presence of Polychromophilus species by PCR of the mitochondrial cytochrome b encoding gene. A total of 1.2% of bats was positive for Polychromophilus, providing the first molecular information of these parasites in Myotis riparius and Eptesicus diminutus, common vespertilionid bats widely distributed in different Brazilian biomes, and Myotis ruber, an endangered species. A Bayesian analysis was conducted to reconstruct the phylogenetic relationships between Polychromophilus recovered from Brazilian bats and those identified elsewhere. Sequences of Brazilian Polychromophilus lineages were placed with P. murinus and in a clade distinct from P. melanipherus, mainly restricted to bats in the family Vespertilionidae. However, the sequences were split into two minor clades, according to the genus of hosts, indicating that P. murinus and a distinct species may be circulating in Brazil. Morphological observations combined with additional molecular studies are needed to conclude and describe these Polychromophilus species.
  • article 16 Citação(ões) na Scopus
    Avian Malaria and Related Parasites from Resident and Migratory Birds in the Brazilian Atlantic Forest, with Description of a New Haemoproteus Species
    (2021) ANJOS, Carolina C.; CHAGAS, Carolina R. F.; FECCHIO, Alan; SCHUNCK, Fabio; COSTA-NASCIMENTO, Maria J.; MONTEIRO, Eliana F.; MATHIAS, Bruno S.; BELL, Jeffrey A.; GUIMARAES, Lilian O.; COMICHE, Kiba J. M.; VALKIUNAS, Gediminas; KIRCHGATTER, Karin
    Determining the prevalence and local transmission dynamics of parasitic organisms are necessary to understand the ability of parasites to persist in host populations and disperse across regions, yet local transmission dynamics, diversity, and distribution of haemosporidian parasites remain poorly understood. We studied the prevalence, diversity, and distributions of avian haemosporidian parasites of the genera Plasmodium, Haemoproteus, and Leucocytozoon among resident and migratory birds in Serra do Mar, Brazil. Using 399 blood samples from 66 Atlantic Forest bird species, we determined the prevalence and molecular diversity of these pathogens across avian host species and described a new species of Haemoproteus. Our molecular and morphological study also revealed that migratory species were infected more than residents. However, vector infective stages (gametocytes) of Leucocytozoon spp., the most prevalent parasites found in the most abundant migrating host species in Serra do Mar (Elaenia albiceps), were not seen in blood films of local birds suggesting that this long-distance Austral migrant can disperse Leucocytozoon parasite lineages from Patagonia to the Atlantic Forest, but lineage sharing among resident species and local transmission cannot occur in this part of Brazil. Our study demonstrates that migratory species may harbor a higher diversity and prevalence of parasites than resident species, but transportation of some parasites by migratory hosts may not always affect local transmission.
  • article 8 Citação(ões) na Scopus
    Recombinant proteins of Plasmodium malariae merozoite surface protein 1 (PmMSP1): Testing immunogenicity in the BALB/c model and potential use as diagnostic tool
    (2019) ELIZARDEZ, Yelina B.; FOTORAN, Wesley L.; GALISTEO JUNIOR, Andre S. J.; CURADO, Izilda; KESPER JUNIOR, Norival; MONTEIRO, Eliana F.; NETO, Irineu Romero; WUNDERLICH, Gerhard; KIRCHGATTER, Karin
    Background Plasmodium malariae is the third most prevalent human malaria-causing species and has a patchy, but ample distribution in the world. Humans can host the parasite for years without presenting significant symptoms, turning its diagnosis and control into a difficult task. Here, we investigated the immunogenicity of recombinant proteins of P. malariae MSP1. Methods Five regions of PmMSP1 were expressed in Escherichia coli as GST-fusion proteins and immunized in BALB/c mice. The specificity, subtyping, and affinity of raised antibodies were evaluated by enzyme-linked immunosorbent assays. Cellular immune responses were analyzed by lymphoproliferation assays and cytokine levels produced by splenocytes were detected by cytometry. Results We found that N-terminal, central regions, and PmMSP1(19) are strongly immunogenic in mice. After three doses, the induced immune responses remained high for 70 days. While antibodies induced after immunization with N-terminal and central regions showed similar affinities to the target antigens, affinities of IgG against PmMSP1(19) were higher. All proteins induced similar antibody subclass patterns (predominantly IgG1, IgG2a, and IgG2b), characterizing a mixed Th1/Th2 response. Further, autologous stimulation of splenocytes from immunized mice led to the secretion of IL2 and IL4, independently of the antigen used. Importantly, IgG from P. malariae-exposed individuals reacted against PmMSP1 recombinant proteins with a high specificity. On the other hand, sera from P. vivax or P. falciparum-infected individuals did not react at all against recombinant PmMSP1 proteins. Conclusion Recombinant PmMSP1 proteins are very useful diagnostic markers of P. malariae in epidemiological studies or in the differential diagnosis of malaria caused by this species. Immunization with recombinant PmMSP1 proteins resulted in a significant humoral immune response, which may turn them potential component candidates for a vaccine against P. malariae.
  • article 64 Citação(ões) na Scopus
    Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis
    (2017) CHAGAS, Carolina Romeiro Fernandes; VALKIUNAS, Gediminas; GUIMARAES, Lilian de Oliveira; MONTEIRO, Eliana Ferreira; GUIDA, Fernanda Junqueira Vaz; SIMOES, Roseli Franca; RODRIGUES, Priscila Thihara; LUNA, Expedito Jose de Albuquerque; KIRCHGATTER, Karin
    Background: The role of zoos in conservation programmes has increased significantly in last decades, and the health of captive animals is essential to guarantee success of such programmes. However, zoo birds suffer from parasitic infections, which often are caused by malaria parasites and related haemosporidians. Studies determining the occurrence and diversity of these parasites, aiming better understanding infection influence on fitness of captive birds, are limited. Methods: In 2011-2015, the prevalence and diversity of Plasmodium spp. and Haemoproteus spp. was examined in blood samples of 677 captive birds from the Sao Paulo Zoo, the largest zoo in Latin America. Molecular and microscopic diagnostic methods were used in parallel to detect and identify these infections. Results: The overall prevalence of haemosporidians was 12.6%. Parasites were mostly detected by the molecular diagnosis, indicating that many birds harbour subclinical or abortive infections. In this project, birds of 17 orders (almost half of all the orders currently accepted in taxonomy of birds), 29 families, and 122 species, were tested, detecting positive individuals in 27% of bird species. Birds from the Anatidae were the most prevalently infected (64.7% of all infected animals). In all, infections with parasites of the genus Plasmodium (overall prevalence 97.6%) predominated when compared to those of the genus Haemoproteus (2.4%). In total, 14 cytochrome b (cytb) lineages of Plasmodium spp. and 2 cytb lineages of Haemoproteus spp. were recorded. Eight lineages were new. One of the reported lineages was broad generalist while others were reported in single or a few species of birds. Molecular characterization of Haemoproteus ortalidum was developed. Conclusion: This study shows that many species of birds are at risk in captivity. It is difficult to stop haemosporidian parasite transmission in zoos, but is possible to reduce the infection rate by treating the infected animals or/and while keeping them in facilities free from mosquitoes. Protocols of quarantine should be implemented whenever an animal is transferred between bird maintaining institutions. This is the first survey of haemosporidians in captive birds from different orders maintained in zoos. It is worth emphasizing the necessity of applying practices to control these parasites in management and husbandry of animals in captivity.
  • article 12 Citação(ões) na Scopus
    Naturally Acquired Humoral Immunity against Malaria Parasites in Non-Human Primates from the Brazilian Amazon, Cerrado and Atlantic Forest
    (2020) MONTEIRO, Eliana Ferreira; FERNANDEZ-BECERRA, Carmen; ARAUJO, Maisa da Silva; MESSIAS, Mariluce Rezende; OZAKI, Luiz Shozo; DUARTE, Ana Maria Ribeiro de Castro; BUENO, Marina Galvao; CATAO-DIAS, Jose Luiz; CHAGAS, Carolina Romeiro Fernandes; MATHIAS, Bruno da Silva; SANTOS, Mayra Gomes dos; SANTOS, Stefanie Vanessa; HOLCMAN, Marcia Moreira; JR, Julio Cesar de Souza; KIRCHGATTER, Karin
    Non-human primates (NHPs) have been shown to be infected by parasites of the genusPlasmodium, the etiological agent of malaria in humans, creating potential risks of zoonotic transmission.Plasmodium brasilianum, a parasite species similar toP. malariaeof humans, have been described in NHPs from Central and South America, including Brazil. The merozoite surface protein 1 (MSP1), besides being a malaria vaccine candidate, is highly immunogenic. Due to such properties, we tested this protein for the diagnosis of parasite infection. We used recombinant proteins ofP. malariaeMSP1, as well as ofP. falciparumandP. vivax, for the detection of antibodies anti-MSP1 of these parasite species, in the sera of NHPs collected in different regions of Brazil. About 40% of the NHP sera were confirmed as reactive to the proteins of one or more parasite species. A relatively higher number of reactive sera was found in animals from the Atlantic Forest than those from the Amazon region, possibly reflecting the former more intense parasite circulation among NHPs due to their proximity to humans at a higher populational density. The presence ofPlasmodiumpositive NHPs in the surveyed areas, being therefore potential parasite reservoirs, needs to be considered in any malaria surveillance program.
  • article 2 Citação(ões) na Scopus
    Antibody Profile Comparison against MSP1 Antigens of Multiple Plasmodium Species in Human Serum Samples from Two Different Brazilian Populations Using a Multiplex Serological Assay
    (2021) MONTEIRO, Eliana Ferreira; FERNANDEZ-BECERRA, Carmen; CURADO, Izilda; WUNDERLICH, Gerhard; HIYANE, Meire Ioshie; KIRCHGATTER, Karin
    Plasmodium malariae has a wide geographic distribution, but mainly at very low parasitemias and in co-infections, leading to an underestimated prevalence of this species. Studies for the detection of antibodies against Plasmodium recombinant proteins are increasingly used to map geographical distributions, seroprevalence and transmission intensities of malaria infection. However, no seroepidemiological survey using recombinant P. malariae proteins has been conducted in Brazil. This work evaluated the antibody response in serum samples of individuals from endemic regions of Brazil (the Amazon region and Atlantic Forest) against five recombinant proteins of P. malariae merozoite surface protein 1 (MSP1), and the MSP1 C-terminal portions of P. vivax and P. falciparum, in a multiplex assay. The positivity was 69.5% of samples recognizing at least one MSP1 recombinant protein. The mean of the Reactivity Index for the C-terminal portion of the P. falciparum was significantly higher compared to the other recombinant proteins, followed by the C-terminal of P. vivax and the N-terminal of P. malariae. Among the recombinant P. malariae proteins, the N-terminal of P. malariae showed the highest Reactivity Index alone. This study validates the use of the multiplex assay to measure naturally acquired IgG antibodies against Plasmodium MSP1 proteins and demonstrate that these proteins are important tools for seroepidemiological surveys and could be used in malaria surveillance.
  • article 7 Citação(ões) na Scopus
    Higher infection probability of haemosporidian parasites in Blue-black Grassquits (Volatinia jacarina) inhabiting native vegetation across Brazil
    (2021) FECCHIO, Alan; RIBEIRO, Rayanne M.; FERREIRA, Francisco C.; DUTRA, Daniela de Angeli; TOLESANO-PASCOLI, Graziela; ALQUEZAR, Renata D.; KHAN, Asmat U.; PICHORIM, Mauro; MOREIRA, Patricia A.; COSTA-NASCIMENTO, Maria J.; MONTEIRO, Eliana F.; MATHIAS, Bruno S.; GUIMARAES, Lilian O.; SIMOES, Roseli F.; BRAGA, Erika M.; KIRCHGATTER, Karin; DIAS, Raphael I.
    Human induced changes on landscape can alter the biotic and abiotic factors that influence the transmission of vector-borne parasites. To examine how infection rates of vector-transmitted parasites respond to changes on natural landscapes, we captured 330 Blue-black Grassquits (Volatinia jacarina) in Brazilian biomes and assessed the prevalence and diversity of avian haemosporidian parasites (Plasmodium and Haemoproteus) across avian host populations inhabiting environment under different disturbance and climatic conditions. Overall prevalence in Blue-black Grassquits was low (11%) and infection rates exhibited considerable spatial variation, ranging from zero to 39%. Based on genetic divergence of cytochrome b gene, we found two lineages of Haemoproteus (Parahaemoproteus) and 10 of Plasmodium. We showed that Blue-black Grassquit populations inhabiting sites with higher proportion of native vegetation cover were more infected across Brazil. Other landscape metrics (number of water bodies and distance to urban areas) and climatic condition (temperature and precipitation) known to influence vector activity and promote avian malaria transmission did not explain infection probability in Blue-black Grassquit populations. Moreover, breeding season did not explain prevalence across avian host populations. Our findings suggest that avian haemosporidian prevalence and diversity in Blue-black Grassquit populations are determined by recent anthropogenic changes in vegetation cover that may alter microclimate, thus influencing vector activity and parasite transmission.
  • article 8 Citação(ões) na Scopus
    Genetic ancestry effects on the distribution of toll-like receptors (TLRs) gene polymorphisms in a population of the Atlantic Forest, Sao Paulo, Brazil
    (2018) GUIMARAES, Lilian O.; BAJAY, Miklos Maximiliano; MONTEIRO, Eliana F.; WUNDERLICH, Gerhard; SANTOS, Sidney E.; KIRCHGATTER, Karin
    The innate immune system governed by toll -like receptors (TLRs) provides the first line of defense against pathogens. Surface -localized TLR1 and TLR6 are known to detect parasite components. TLR encoding genes were shown to display signatures of recent positive selection in Europeans and might be involved in local adaptation at immune -related genes. To verify the influence of Brazilian population admixture on the distribution of polymorphisms in TLRs, we analyzed the genotype frequencies of 24 polymorphisms distributed across five TLR genes in a Southeastern Brazilian population where autochthonous cases of malaria occur in small foci of transmission. The estimation of ancestry showed mainly European ancestry (63%) followed by African ancestry (22%). Mean proportions of European ancestry differed significantly between the genotypes of the TLR1 (1602S) gene and in the TLR6 (P249S) gene. The chance of having the G allele in TLR1 gene increases as European ancestry increases as well as the chance of having the T allele in the TLR6 gene. The 602S allele is related to a ""hypo -responsiveness"" possibly explaining the high prevalence of asymptomatic malaria cases in areas of Southeastern Brazil. Our results underline the necessity to include informative ancestry markers in genetic association studies in order to avoid biased results.
  • article 7 Citação(ões) na Scopus
    Influence of polymorphisms in toll-like receptors (TLRs) on malaria susceptibility in low-endemic area of the Atlantic Forest, Sao Paulo, Brazil
    (2018) GUIMARAES, Lilian O.; FERNANDES, Francisco; MONTEIRO, Eliana F.; CURADO, Izilda; HOLCMAN, Marcia M.; WUNDERLICH, Gerhard; SANTOS, Sidney E.; SOLER, Julia M.; KIRCHGATTER, Karin
    In low-endemic areas for malaria transmission, asymptomatic individuals play an important role as reservoirs for malarial infection. Understanding the dynamics of asymptomatic malaria is crucial for its efficient control in these regions. Genetic host factors such as Toll-like receptor CUR) polymorphisms may play a role in the maintenance or elimination of infection. In this study, the effect of TLR polymorphisms on the susceptibility to malaria was investigated among individuals living in the Atlantic Forest of Sao Paulo, Southern Brazil. A hundred and ninety-five Brazilian individuals were enrolled and actively followed up for malaria for three years. Twenty-four polymorphisms in five toll-like receptor (TLR) genes were genotyped by RFLP, direct sequencing or fragment analysis. The genotypes were analyzed for the risk of malaria. Ongoing Plasmodium vivax or P. malaria infection, was identified by the positive results in PCR tests and previous P. vtvax malaria, was assumed when antiplasmodial antibodies against PvMSP1(19) were detected by ELISA. An evaluation of genomic ancestry was conducted using biallelic ancestry informative markers and the results were used as correction in the statistical analysis. Nine SNPs and one microsatellite were found polymorphic and three variant alleles in TLR genes were associated to malaria susceptibility. The regression coefficient estimated for SNP TLR9.-1237.T/C indicated that the presence of at least one allele C increased, on average, 2.3 times the malaria odds, compared to individuals with no allele C in this SNP. However, for individuals with the same sex, age and household, the presence of at least one allele C in SNP TLR9.-1486.T/C reduced, on average, 1.9 times the malaria odds, compared to individuals with no allele C. Moreover, this allele C plus an S allele in TLR6.P249S in individuals with same sex, age and ancestry, reduced, on average, 4.4 times the malaria odds. Our findings indicate a significant association of TLR9.-1237.T/C gene polymorphism with malarial infection and contribute to a better knowledge of the role of TLRs in malaria susceptibility in an epidemiological setting different from other settings.
  • article 4 Citação(ões) na Scopus
    Assessing Diversity, Plasmodium Infection and Blood Meal Sources in Mosquitoes (Diptera: Culicidae) from a Brazilian Zoological Park with Avian Malaria Transmission
    (2021) GUIMARAES, Lilian de Oliveira; SIMOES, Roseli Franca; CHAGAS, Carolina Romeiro Fernandes; MENEZES, Regiane Maria Tironi de; SILVA, Fabiana Santos; MONTEIRO, Eliana Ferreira; HOLCMAN, Marcia Moreira; BAJAY, Miklos Maximiliano; PINTER, Adriano; CAMARGO-NEVES, Vera Lucia Fonseca de; KIRCHGATTER, Karin
    Simple Summary Zoological gardens in forest areas host a large diversity of vertebrate species (exotic and indigenous, free-living and captive, migrant and resident), resulting in an artificial proximity of animal species that would never share the same environment in natural conditions. The presence of mosquitoes enables the transmission of vector-borne pathogens, as is the case with avian malaria parasites. The mild infections in some bird species may become a serious threat to others that do not possess a natural resistance. Thus, the identification of the potential vectors of these parasites is important for future control of these agents, aiming at the bird species conservation. In this study, we collected over 2000 mosquitoes in Sao Paulo Zoo and analyzed them through molecular methods. Six different mosquito species yielded positive for the targeted parasite DNA. We demonstrated that these culicids had fed mainly on bird species and we reported three mosquito species that have never been previously incriminated as potential vectors of these parasites, enabling the use of more specific measures for vigilance and mosquito control. Avian malaria parasites are widespread parasites transmitted by Culicidae insects belonging to different genera. Even though several studies have been conducted recently, there is still a lack of information about potential vectors of Plasmodium parasites, especially in Neotropical regions. Former studies with free-living and captive animals in Sao Paulo Zoo showed the presence of several Plasmodium and Haemoproteus species. In 2015, a pilot study was conducted at the zoo to collect mosquitoes in order to find out (i) which species of Culicidae are present in the study area, (ii) what are their blood meal sources, and (iii) to which Plasmodium species might they be potential vectors. Mosquitoes were morphologically and molecularly identified. Blood meal source and haemosporidian DNA were identified using molecular protocols. A total of 25 Culicidae species were identified, and 6 of them were positive for Plasmodium/Haemoproteus DNA. Ten mosquito species had their source of blood meal identified, which were mainly birds, including some species that were positive for haemosporidian parasites in the former study mentioned. This study allowed us to expand the list of potential vectors of avian malaria parasites and to improve our knowledge of the evolutionary and ecological relationships between the highly diverse communities of birds, parasites, and vectors present at Sao Paulo Zoo.