Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
DOVE MEDICAL PRESS LTD
Autores
SILVA, Talita Dias da
TONKS, James
WATSON, Suzanna
FAVERO, Francis Meire
MONTEIRO, Carlos Bandeira de Mello
Citação
NEUROPSYCHIATRIC DISEASE AND TREATMENT, v.13, p.2209-2217, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. Objective: To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Patients and methods: Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10-34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Results: Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. Conclusion: The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population.
Palavras-chave
motor skills, physical therapy, cell phone, virtual reality exposure therapy, transfer of learning
Referências
  1. Al-Ani FS, 2001, SAUDI MED J, V22, P259
  2. Anderson JL, 2002, BRAIN, V125, P4, DOI 10.1093/brain/awf012
  3. Bartels B, 2011, J REHABIL MED, V43, P770, DOI 10.2340/16501977-0841
  4. Bendixen RM, 2014, DISABIL REHABIL, V36, P1918, DOI 10.3109/09638288.2014.883444
  5. Berard C, 2005, NEUROMUSCULAR DISORD, V15, P463, DOI 10.1016/j.nmd.2005.03.004
  6. Bezdicek O, 2014, ASSESSMENT, V21, P723, DOI 10.1177/1073191114524271
  7. Burgstahler S, 2011, NEUROREHABILITATION, V28, P183, DOI 10.3233/NRE-2011-0648
  8. Cyrulnik SE, 2008, J INT NEUROPSYCH SOC, V14, P853, DOI 10.1017/S135561770808106X
  9. da Silva TD, 2015, HEALTHMED, V9, P365
  10. Eagle M, 2002, NEUROMUSCULAR DISORD, V12, P926, DOI 10.1016/S0960-8966(02)00140-2
  11. Flanigan KM, 2014, NEUROL CLIN, V32, P671, DOI 10.1016/j.ncl.2014.05.002
  12. Ganea R, 2012, J CHILD NEUROL, V27, P30, DOI 10.1177/0883073811413581
  13. Gao JH, 1996, SCIENCE, V272, P545, DOI 10.1126/science.272.5261.545
  14. Hashimoto Y, 2010, BMC NEUROSCI, V11, DOI 10.1186/1471-2202-11-117
  15. HOFFMAN EP, 1987, CELL, V51, P919, DOI 10.1016/0092-8674(87)90579-4
  16. JAMES WV, 1984, PROSTHET ORTHOT INT, V8, P111
  17. Jansen M, 2010, BMC PEDIATR, V10, DOI 10.1186/1471-2431-10-55
  18. Jover M, 2006, NEUROSCI LETT, V403, P271, DOI 10.1016/j.neulet.2006.04.054
  19. Kinali M, 2009, LANCET NEUROL, V8, P918, DOI 10.1016/S1474-4422(09)70211-X
  20. Kohler M, 2009, J NEUROL NEUROSUR PS, V80, P320, DOI 10.1136/jnnp.2007.141721
  21. Lee JS, 2002, MUSCLE NERVE, V26, P506, DOI 10.1002/mus.10238
  22. Li ZM, 2005, CLIN BIOMECH, V20, P177, DOI 10.1016/j.clinbiomech.2004.10.002
  23. Malheiros SRP, 2015, INT ARCH MED, V8, P217
  24. MARTINEZ AC, 1990, ARCH PHYS MED REHAB, V71, P558
  25. Martinez José Antônio Baddini, 2006, Rev. Assoc. Med. Bras., V52, P347, DOI 10.1590/S0104-42302006000500024
  26. Mattar FL, 2008, NEUROMUSCULAR DISORD, V18, P193, DOI 10.1016/j.nmd.2007.11.004
  27. Mayhew A, 2013, DEV MED CHILD NEUROL, V55, P1038, DOI 10.1111/dmcn.12213
  28. Mehler MF, 2000, BRAIN RES REV, V32, P277, DOI 10.1016/S0165-0173(99)00090-9
  29. Menezes LDCd, 2015, MEDICALEXPRESS, V2, P1
  30. Mento G, 2011, CLIN NEUROPSYCHOL, V25, P1359, DOI 10.1080/13854046.2011.617782
  31. Murakami K, 2014, J PHYS THER SCI, V26, P621, DOI 10.1589/jpts.26.621
  32. Nair KPS, 2001, J REHABIL MED, V33, P147, DOI 10.1080/165019701750300591
  33. Nakafuji A, 2001, PERCEPT MOTOR SKILL, V93, P339, DOI 10.2466/PMS.93.5.339-352
  34. O'Sullivan LW, 2005, ERGONOMICS, V48, P703, DOI 10.1080/00140130500070954
  35. Paula JN, 2015, ARQUIVOS BRASILEIROS, V7, P26
  36. Malheiros SRP, 2016, NEUROPSYCH DIS TREAT, V12, P41, DOI 10.2147/NDT.S87735
  37. Pires N. C. M., 2006, RBGN SAO PAULO, V8, P37
  38. Possebom W. F., 2016, J HUMAN GROWTH DEV, V26, P205
  39. SCOTT OM, 1982, MUSCLE NERVE, V5, P291, DOI 10.1002/mus.880050405
  40. Servais L, 2013, NEUROMUSCULAR DISORD, V23, P139, DOI 10.1016/j.nmd.2012.10.022
  41. Sienko TS, 2010, J CHILD NEUROL, V25, P1103
  42. Skalsky AJ, 2012, PHYS MED REH CLIN N, V23, P675, DOI 10.1016/j.pmr.2012.06.009
  43. Smith DL, 2006, J MANIP PHYSIOL THER, V29, P257, DOI 10.1016/j.jmpt.2006.03.009
  44. Souza DE, 2006, Braz. J. Phys. Ther., V10, P355, DOI 10.1590/S1413-35552006000300016
  45. Stoddard J, 1996, NEUROPSYCHOLOGIA, V34, P605, DOI 10.1016/0028-3932(95)00158-1
  46. Uchikawa K, 2004, J REHABIL MED, V36, P124, DOI 10.1080/16501970410023461
  47. Vestergaard P, 2001, J REHABIL MED, V33, P150, DOI 10.1080/165019701750300609
  48. VIGNOS P J Jr, 1960, J Chronic Dis, V12, P273, DOI 10.1016/0021-9681(60)90105-3
  49. Visser J, 2003, HUM MOVEMENT SCI, V22, P479, DOI 10.1016/j.humov.2003.09.005
  50. Wagner KR, 2007, BBA-MOL BASIS DIS, V1772, P229, DOI 10.1016/j.bbadis.2006.06.009
  51. WEBSTER C, 1988, CELL, V52, P503, DOI 10.1016/0092-8674(88)90463-1
  52. Winstein CJ, 1997, J NEUROPHYSIOL, V77, P1581
  53. Witney AG, 2004, TRENDS NEUROSCI, V27, P637, DOI 10.1016/j.tins.2004.08.006