Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression

Carregando...
Imagem de Miniatura
Citações na Scopus
40
Tipo de produção
article
Data de publicação
2018
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
PADBERG, Frank
VIEIRA, Erica Leandro Marciano
TEIXEIRA, Antonio Lucio
CARVALHO, Andre F.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, v.86, p.211-217, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Transcranial direct current stimulation (tDCS) holds promise as a therapeutic intervention for major depressive disorder (MDD). A more precise understanding of its underlying mechanisms may aid in the identification of subsets of patients responsive to tDCS within the context of precision psychiatry. Objective: In this ancillary investigation of the Escitalopram vs. Electrical Current Therapy for Treating Depression Clinical Study (ELECT-TDCS), we investigated whether plasma levels of several cytokines and neurotrophic factors associated with major depression or antidepressant response predicted tDCS effects. Methods: We examined, in 236 patients at 3 timepoints during a 10-week treatment course, plasma levels of nerve growth factor (NGF), brain-derived (BDNF), glial-cell line derived neurotrophic factor (GDNF), the interleukins (IL) IL-1 beta, IL-6, IL-8, IL-10, IL-12p70, IL-18, IL-33, tumor necrosis factor-alpha (TNF-alpha), and its soluble receptors sTNFrl and sTNFr2. General linear models and mixed-models analyses of variance were used to respectively assess whether plasma levels of these molecules (1) predicted tDCS antidepressant improvement and (2) changed over time. Results: After correction for multiple comparisons (false discovery rate method), NGF baseline levels predicted early depression improvement for tDCS vs. escitalopram, whilst other biomarkers did not significantly predict treatment improvement. The levels of IL12p70, IL10, IL-1 beta, IL-8 and sTNFr1 decreased over time, regardless of allocation group and clinical response. Conclusion: In general, peripheral biomarkers were not associated with the outcome. The post-hoc finding of baseline NGF levels predicting early depression improvement for tDCS should be explored in further studies.
Palavras-chave
Transcranial direct current stimulation, Escitalopram, Major depressive disorder, Biological marker, Clinical trial
Referências
  1. Amorim P., 2000, REV BRAS PSIQUIATR, V22, P106, DOI 10.1590/S1516-44462000000300003
  2. Antal A, 2017, CLIN NEUROPHYSIOL, V128, P1774, DOI 10.1016/j.clinph.2017.06.001
  3. BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
  4. Bikson M, 2016, BRAIN STIMUL, V9, P641, DOI 10.1016/j.brs.2016.06.004
  5. Brunoni AR, 2017, NEW ENGL J MED, V376, P2523, DOI 10.1056/NEJMoa1612999
  6. Brunoni A.R., 2014, EUROPEAN NEUROPSYCHO
  7. Brunoni AR, 2015, J AFFECT DISORDERS, V185, P209, DOI 10.1016/j.jad.2015.07.006
  8. Brunoni AR, 2015, WORLD J BIOL PSYCHIA, V16, P114, DOI 10.3109/15622975.2014.958101
  9. Brunoni AR, 2015, PROG NEURO-PSYCHOPH, V56, P91, DOI 10.1016/j.pnpbp.2014.08.009
  10. Brunoni AR, 2014, PSYCHOPHARMACOLOGY, V231, P1315, DOI 10.1007/s00213-013-3322-3
  11. Brunoni AR, 2013, JAMA PSYCHIAT, V70, P383, DOI 10.1001/2013.jamapsychiatry.32
  12. Brunoni AR, 2008, INT J NEUROPSYCHOPH, V11, P1169, DOI 10.1017/S1461145708009309
  13. Brunoni AR, 2015, SAO PAULO MED J, V133, P252, DOI 10.1590/1516-3180.2014.00351712
  14. Brunoni AR, 2012, BRAIN STIMUL, V5, P175, DOI 10.1016/j.brs.2011.03.002
  15. Chen YW, 2015, NEUROPSYCH DIS TREAT, V11, DOI 10.2147/NDT.S81432
  16. Craig CL, 2003, MED SCI SPORT EXER, V35, P1381, DOI 10.1249/01.MSS.0000078924.61453.FB
  17. Dantzer R, 2008, NAT REV NEUROSCI, V9, P46, DOI 10.1038/nrn2297
  18. DellaGioia N, 2010, NEUROSCI BIOBEHAV R, V34, P130, DOI 10.1016/j.neubiorev.2009.07.014
  19. Diniz BS, 2012, J PSYCHIATR RES, V46, P135, DOI 10.1016/j.jpsychires.2011.09.007
  20. Duman RS, 2006, BIOL PSYCHIAT, V59, P1116, DOI 10.1016/j.biopsych.2006.02.013
  21. Duman RS, 1997, ARCH GEN PSYCHIAT, V54, P597
  22. Fernandes BS, 2017, BMC MED, V15, DOI 10.1186/s12916-017-0849-x
  23. Gold PW, 2015, MOL PSYCHIATR, V20, P32, DOI 10.1038/mp.2014.163
  24. HAMILTON M, 1960, J NEUROL NEUROSUR PS, V23, P56, DOI 10.1136/jnnp.23.1.56
  25. Hiles SA, 2012, BRAIN BEHAV IMMUN, V26, P1180, DOI 10.1016/j.bbi.2012.06.001
  26. Kim JM, 2018, PSYCHONEUROENDOCRINO, V90, P85, DOI 10.1016/j.psyneuen.2018.02.006
  27. KIRKHAM JJ, 2010, BMJ-BRIT MED J, V340, DOI 10.1136/BMJ.C365
  28. Kohler CA, 2017, ACTA PSYCHIAT SCAND, V135, P373, DOI 10.1111/acps.12698
  29. Kohler CA, 2018, MOL NEUROBIOL, V55, P4195, DOI 10.1007/s12035-017-0632-1
  30. Kohler O, 2014, JAMA PSYCHIAT, V71, P1381, DOI 10.1001/jamapsychiatry.2014.1611
  31. Krishnan V, 2008, NATURE, V455, P894, DOI 10.1038/nature07455
  32. Kudinova AY, 2016, J ABNORM PSYCHOL, V125, P482, DOI 10.1037/abn0000158
  33. Lefaucheur JP, 2017, CLIN NEUROPHYSIOL, V128, P56, DOI 10.1016/j.clinph.2016.10.087
  34. Leonard B, 2012, NEUROSCI BIOBEHAV R, V36, P764, DOI 10.1016/j.neubiorev.2011.12.005
  35. Lin PY, 2015, J PSYCHIATR RES, V63, P20, DOI 10.1016/j.jpsychires.2015.02.004
  36. Liu CS, 2014, CNS NEUROL DISORD-DR, V13, P1693
  37. Martino M, 2013, PSYCHONEUROENDOCRINO, V38, P1824, DOI 10.1016/j.psyneuen.2013.02.009
  38. Moffa AH, 2017, J AFFECT DISORDERS, V221, P1, DOI 10.1016/j.jad.2017.06.021
  39. Molendijk ML, 2014, MOL PSYCHIATR, V19, P791, DOI 10.1038/mp.2013.105
  40. Palm U, 2013, J AFFECT DISORDERS, V150, P659, DOI 10.1016/j.jad.2013.03.015
  41. Pariante CM, 2017, EUR NEUROPSYCHOPHARM, V27, P554, DOI 10.1016/j.euroneuro.2017.04.001
  42. Raison CL, 2006, TRENDS IMMUNOL, V27, P24, DOI 10.1016/j.it.2005.11.006
  43. Rivera-Rivera Y., 2014, J CLIN CELL IMMUNOL, V5
  44. Seibt O, 2015, BRAIN STIMUL, V8, P590, DOI 10.1016/j.brs.2015.01.401
  45. Sharma AN, 2016, J AFFECT DISORDERS, V197, P9, DOI 10.1016/j.jad.2016.02.067