Biologic Impact of Mechanical Power at High and Low Tidal Volumes in Experimental Mild Acute Respiratory Distress Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
44
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
SANTOS, Raquel S.
MAIA, Ligia de A.
OLIVEIRA, Milena V.
SANTOS, Cintia L.
MORAES, Lillian
PINTO, Eliete F.
SAMARY, Cynthia dos S.
MACHADO, Joana A.
CARVALHO, Anna Carolinna
FERNANDES, Marcos Vinicius de S.
Citação
ANESTHESIOLOGY, v.128, n.6, p.1193-1206, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The authors hypothesized that low tidal volume (V-T) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of V-T and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). Methods: Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different V-T (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (Delta P,(2)(L)/E,(L)) x RR (Delta P,(L) = transpulmonary driving pressure; E,(L) = lung elastance), and was three-fold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis. Results: Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high V-T compared to low V-T, in both low (low V-T: 11 [9 to 14], high V-T: 18 [15 to 20]) and high (low V-T: 19 [16 to 25], high V-T: 29 [27 to 30]) power groups. At high V-T, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high V-T than in low V-T. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression. Conclusions: In experimental mild ARDS, even at low V-T, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low V-T should be combined with low power.
Palavras-chave
Referências
  1. Abdi H, 2011, GREENHOUSE GEISSER C, P544
  2. Akamine R, 2007, J BIOCHEM BIOPH METH, V70, P481, DOI 10.1016/j.jbbm.2006.11.008
  3. Amato MBP, 2015, NEW ENGL J MED, V372, P747, DOI 10.1056/NEJMsa1410639
  4. BAYDUR A, 1982, AM REV RESPIR DIS, V126, P788
  5. Briel M, 2010, JAMA-J AM MED ASSOC, V303, P865, DOI 10.1001/jama.2010.218
  6. Brower RG, 2000, NEW ENGL J MED, V342, P1301
  7. Contreras M, 2012, CRIT CARE MED, V40, P2622, DOI 10.1097/CCM.0b013e318258f8b4
  8. Coppola S, 2014, CRIT CARE, V18, DOI 10.1186/cc13777
  9. Cressoni M, 2016, ANESTHESIOLOGY, V124, P1100, DOI 10.1097/ALN.0000000000001056
  10. Cressoni M, 2015, ANESTHESIOLOGY, V123, P618, DOI 10.1097/ALN.0000000000000727
  11. Fujita Y, 2007, MED SCI MONITOR, V13, pBR95
  12. Gattinoni L, 2016, INTENS CARE MED, V42, P1567, DOI 10.1007/s00134-016-4505-2
  13. Gattinoni L, 2017, ANN TRANSL MED, V5, DOI 10.21037/atm.2017.06.64
  14. Guerin C, 2016, CRIT CARE, V20, DOI 10.1186/s13054-016-1556-2
  15. Hotchkiss JR, 2000, AM J RESP CRIT CARE, V161, P463, DOI 10.1164/ajrccm.161.2.9811008
  16. Imai Y, 2003, JAMA-J AM MED ASSOC, V289, P2104, DOI 10.1001/jama.289.16.2104
  17. KASPER M, 1995, HISTOCHEM CELL BIOL, V104, P383, DOI 10.1007/BF01458132
  18. Kiss T, 2016, BRIT J ANAESTH, V116, P708, DOI 10.1093/bja/aew093
  19. Laffey JG, 2004, INTENS CARE MED, V30, P347, DOI 10.1007/s00134-003-2051-1
  20. Marini JJ, 2016, INTENS CARE MED, V42, P1597, DOI 10.1007/s00134-016-4534-x
  21. Marini JJ, 2011, AM J RESP CRIT CARE, V184, P756, DOI 10.1164/rccm.201102-0226PP
  22. MEAD J, 1970, J APPL PHYSIOL, V28, P596
  23. MORTOLA JP, 1985, J APPL PHYSIOL, V59, P295
  24. Garcia CSNB, 2008, CRIT CARE MED, V36, P232, DOI 10.1097/01.CCM.0000295309.69123.AE
  25. Nin N, 2017, INTENS CARE MED, V43, P200, DOI 10.1007/s00134-016-4611-1
  26. Padilha Gisele de A, 2016, Intensive Care Med Exp, V4, P35
  27. Protti A, 2011, AM J RESP CRIT CARE, V183, P1354, DOI 10.1164/rccm.201010-1757OC
  28. Putensen C, 2009, ANN INTERN MED, V151, P566, DOI 10.7326/0003-4819-151-8-200910200-00011
  29. Radermacher P, 2017, AM J RESP CRIT CARE, V196, P964, DOI 10.1164/rccm.201610-2156SO
  30. Ranieri VM, 2000, JAMA-J AM MED ASSOC, V284, P43, DOI 10.1001/jama.284.1.43
  31. Ranieri VM, 1999, JAMA-J AM MED ASSOC, V282, P54, DOI 10.1001/jama.282.1.54
  32. Rich PB, 2003, J SURG RES, V113, P139, DOI 10.1016/S0022-4804(03)00195-1
  33. Riva DR, 2008, CRIT CARE MED, V36, P1900, DOI 10.1097/CCM.0b013e3181760e5d
  34. Samary CS, 2016, ANESTHESIOLOGY, V125, P1070, DOI 10.1097/ALN.0000000000001297
  35. Samary CS, 2016, CRIT CARE MED, V44, pE553, DOI 10.1097/CCM.0000000000001611
  36. Samary CS, 2015, ANESTHESIOLOGY, V123, P423, DOI 10.1097/ALN.0000000000000716
  37. Schmittgen Thomas D., 2008, V429, P89, DOI 10.1007/978-1-60327-040-3_7
  38. Schumann S, 2014, MINERVA ANESTESIOL, V80, P19
  39. Soluri-Martins A, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00257
  40. Spieth PM, 2015, ANESTHESIOLOGY, V122, P106, DOI 10.1097/ALN.0000000000000415
  41. Tonetti T, 2017, ANN TRANSL MED, V5, DOI 10.21037/atm.2017.07.08