Blunted peripheral blood supply and underdeveloped skeletal muscle in Fontan patients: The impact on functional capacity

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Citação
INTERNATIONAL JOURNAL OF CARDIOLOGY, v.271, p.54-59, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Changes in circulatory physiology are common in Fontan patients due to suboptimal cardiac output, which may reduce the peripheral blood flow and impair the skeletal muscle. The objective of this study was to investigate the forearm blood flow (FBF), cross-sectional area (CSA) of the thigh and functional capacity in asymptomatic clinically stable patients undergoing Fontan surgery. Methods: Thirty Fontan patients and 27 healthy subjects underwent venous occlusion plethysmography, magnetic resonance imaging of the thigh musculature and maximal cardiopulmonary exercise testing. Muscle sympathetic nerve activity (MSNA), norepinephrine measures, cardiovascular magnetic resonance, handgrip strength and 6-minute walk test were also performed. Results: Fontan patients have blunted FBF (1.59 +/- 0.33 vs 2.17 +/- 0.52 mL/min/100 mL p < 0.001) and forearm vascular conductance (FVC) (1.69 +/- 0.04 vs 2.34 +/- 0.62 units p < 0.001), reduced CSA of the thigh (81.2 +/- 18.6 vs 116.3 +/- 26.4 cm(2) p < 0.001), lower peak VO2 (29.3 +/- 6 vs 41.5 +/- 9mL/kg/min p < 0.001), walked distance (607 +/- 60 vs 701 +/- 58m p < 0.001) and handgrip strength (21 +/- 9 vs 30 +/- 8 kgf p < 0.001). The MSNA (30 +/- 4 vs 22 +/- 3 bursts/min p < 0.001) and norepinephrine concentration [265 (236-344) vs 222 (147-262) pg/mL p = 0.006] were also higher in Fontan patients. Multivariate linear regression showed FVC (beta = 0.653; CI = 0.102-1.205; p = 0.022) and stroke volume (beta = 0.018; CI = 0.007-0.029; p = 0.002) to be independently associated with reduced CSA of the thigh adjusted for body mass index. The CSA of the thigh adjusted for body mass index (beta = 5.283; CI = 2.254-8.312; p = 0.001) was independently associated with reduced peak VO2. Conclusion: Patients with Fontan operation have underdeveloped skeletal muscle with reduced strengh that is associated with suboptimal peripheral blood supply and diminished exercise capacity.
Palavras-chave
Fontan procedure, Skeletal muscle, Muscle sympathetic nerve activity, Forearm blood flow, Functional capacity
Referências
  1. Antunes-Correa LM, 2010, EUR J HEART FAIL, V12, P58, DOI 10.1093/eurjhf/hfp168
  2. Atz AM, 2015, CONGENIT HEART DIS, V10, pE30, DOI 10.1111/chd.12193
  3. Avitabile CM, 2014, HEART, V100, P1702, DOI 10.1136/heartjnl-2014-305723
  4. Nunes RAB, 2014, CARDIOLOGY, V127, P38, DOI 10.1159/000355157
  5. Caneo LF, 2017, WORLD J PEDIATR CONG, V8, P376, DOI 10.1177/2150135117701405
  6. Cordina R, 2013, HEART, V99, P1530, DOI 10.1136/heartjnl-2013-304249
  7. Cordina RL, 2013, INT J CARDIOL, V168, P780, DOI 10.1016/j.ijcard.2012.10.012
  8. DELEVAL MR, 1988, J THORAC CARDIOV SUR, V96, P682
  9. DICK M, 1975, AM J CARDIOL, V36, P327, DOI 10.1016/0002-9149(75)90484-1
  10. dos Santos MR, 2017, J AM MED DIR ASSOC, V18, P240, DOI 10.1016/j.jamda.2016.09.006
  11. DRINKWATER BL, 1975, J GERONTOL, V30, P385, DOI 10.1093/geronj/30.4.385
  12. Fagius J, 1993, Clin Auton Res, V3, P201
  13. Falk Bareket, 2006, J Pediatr Nurs, V21, P244, DOI 10.1016/j.pedn.2005.06.018
  14. FONTAN F, 1971, THORAX, V26, P240, DOI 10.1136/thx.26.3.240
  15. Fulster S, 2013, EUR HEART J, V34, P512, DOI 10.1093/eurheartj/ehs381
  16. Gewillig M, 2016, HEART, V102, P1081, DOI 10.1136/heartjnl-2015-307467
  17. Greutmann M, 2011, HEART, V97, P1164, DOI 10.1136/hrt.2010.213579
  18. Hagstromer M, 2006, PUBLIC HEALTH NUTR, V9, P755, DOI 10.1079/PHN2005898
  19. Kervio G, 2005, ARCH MAL COEUR VAISS, V98, P1219
  20. KREUTZER G, 1973, J THORAC CARDIOV SUR, V66, P613
  21. Lambert E, 2013, INT J CARDIOL, V167, P1333, DOI 10.1016/j.ijcard.2012.04.015
  22. Loup O, 2009, EUR J CARDIO-THORAC, V36, P105, DOI 10.1016/j.ejcts.2009.03.023
  23. MARCELLETTI C, 1990, J THORAC CARDIOV SUR, V100, P228
  24. Matsudo SMM, 2001, REV BRAS ATIV FIS SA, V6, P5, DOI 10.12820/RBAFS.V.6N2P5-18
  25. McCrindle BW, 2007, ARCH DIS CHILD, V92, P509, DOI 10.1136/adc.2006.105239
  26. Meneghelo R., 2010, ARQ BRAS CARDIOL, P1
  27. Middlekauff HR, 2010, CIRC-HEART FAIL, V3, P537, DOI 10.1161/CIRCHEARTFAILURE.109.903773
  28. Morley JE, 2006, AGING MALE, V9, P135, DOI 10.1080/13685530600765409
  29. MORRIS CK, 1993, J AM COLL CARDIOL, V22, P175, DOI 10.1016/0735-1097(93)90832-L
  30. Mozaffarian D, 2016, CIRCULATION, V133, pE38, DOI 10.1161/CIR.0000000000000350
  31. Negrao CE, 2001, AM J PHYSIOL-HEART C, V280, pH1286
  32. Ono M, 2016, EUR J CARDIO-THORAC, V50, P632, DOI 10.1093/ejcts/ezw091
  33. Paridon SM, 2006, CIRCULATION, V113, P1905, DOI 10.1161/CIRCULATIONAHA.106.174375
  34. Powell AJ, 2000, PEDIATR CARDIOL, V21, P104, DOI 10.1007/s002469910014
  35. Pundi KN, 2015, J AM COLL CARDIOL, V66, P1700, DOI 10.1016/j.jacc.2015.07.065
  36. Shafer KM, 2012, J AM COLL CARDIOL, V60, P2115, DOI 10.1016/j.jacc.2012.08.970
  37. Shewan LG, 2014, INT J CARDIOL, V170, P253, DOI 10.1016/j.ijcard.2013.11.001
  38. Somerville J, 1997, ANNU REV MED, V48, P283
  39. Sutherland N, 2015, HEART LUNG CIRC, V24, P753, DOI 10.1016/j.hlc.2015.03.005
  40. Takken T, 2009, NETH HEART J, V17, P385, DOI 10.1007/BF03086289
  41. Turquetto ALR, 2017, PEDIATR CARDIOL, V38, P981, DOI 10.1007/s00246-017-1606-9
  42. von Haehling S, 2017, NAT REV CARDIOL, V14, P323, DOI 10.1038/nrcardio.2017.51
  43. von Haehling S, 2016, J CACHEXIA SARCOPENI, V7, P507, DOI 10.1002/jcsm.12167
  44. WANG Y, 1960, J CLIN INVEST, V39, P1051, DOI 10.1172/JCI104120