Technical challenges of working with extracellular vesicles

Carregando...
Imagem de Miniatura
Citações na Scopus
367
Tipo de produção
article
Data de publicação
2018
Editora
ROYAL SOC CHEMISTRY
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
RAMIREZ, Marcel I.
AMORIM, Maria G.
GADELHA, Catarina
MILIC, Ivana
WELSH, Joshua A.
FREITAS, Vanessa M.
NAWAZ, Muhammad
AKBAR, Naveed
COUCH, Yvonne
MAKIN, Laura
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
NANOSCALE, v.10, n.3, p.881-906, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Extracellular Vesicles (EVs) are gaining interest as central players in liquid biopsies, with potential applications in diagnosis, prognosis and therapeutic guidance in most pathological conditions. These nano-sized particles transmit signals determined by their protein, lipid, nucleic acid and sugar content, and the unique molecular pattern of EVs dictates the type of signal to be transmitted to recipient cells. However, their small sizes and the limited quantities that can usually be obtained from patient-derived samples pose a number of challenges to their isolation, study and characterization. These challenges and some possible options to overcome them are discussed in this review.
Palavras-chave
Referências
  1. Abramowicz A, 2016, MOL BIOSYST, V12, P1407, DOI 10.1039/c6mb00082g
  2. Akers JC, 2015, J NEURO-ONCOL, V123, P205, DOI 10.1007/s11060-015-1784-3
  3. Altadill T, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151339
  4. Amorim MG, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14264-5
  5. ANDERS S, 2010, GENOME BIOL, V11
  6. Anders S, 2015, BIOINFORMATICS, V31, P166, DOI 10.1093/bioinformatics/btu638
  7. Andreu Z, 2016, J EXTRACELL VESICLES, V5, DOI 10.3402/jev.v5.31655
  8. Andrews S, FASTQC QUALITY CONTR
  9. Atkin-Smith GK, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8439
  10. Aubertin K, 2016, SCI REP-UK, V6, DOI 10.1038/srep35376
  11. Aushev VN, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078649
  12. Balaj L, 2015, SCI REP-UK, V5, DOI 10.1038/srep10266
  13. Baldwin S, 2017, NANOMED-NANOTECHNOL, V13, P765, DOI 10.1016/j.nano.2016.10.013
  14. Baranyai T, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145686
  15. Barteneva NS, 2013, BMC CELL BIOL, V14, DOI 10.1186/1471-2121-14-23
  16. Betzig E, 2006, SCIENCE, V313, P1642, DOI 10.1126/science.1127344
  17. BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
  18. Bobrie A, 2013, ONCOIMMUNOLOGY, V2, P22565, DOI 10.4161/0NCI.2256520120NC0IMM0322
  19. Boing A.N., 2014, J EXTRACELL VESICLES, V3
  20. Bronisz A, 2014, CANCER RES, V74, P738, DOI 10.1158/0008-5472.CAN-13-2650
  21. Bryzgunova OE, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157566
  22. Caby MP, 2005, INT IMMUNOL, V17, P879, DOI 10.1093/intimm/dxh267
  23. Cantin R, 2008, J IMMUNOL METHODS, V338, P21, DOI 10.1016/j.jim.2008.07.007
  24. Cao M., 2015, ELIFE, V4, P5242
  25. Cappellesso R, 2014, CANCER CYTOPATHOL, V122, P685, DOI 10.1002/cncy.21442
  26. Cestari I, 2012, J IMMUNOL, V188, P1942, DOI 10.4049/jimmunol.1102053
  27. Chandler WL, 2011, J THROMB HAEMOST, V9, P1216, DOI 10.1111/j.1538-7836.2011.04283.x
  28. Chen C, 2010, LAB CHIP, V10, P505, DOI 10.1039/b916199f
  29. Chen WW, 2013, MOL THER-NUCL ACIDS, V2, DOI 10.1038/mtna.2013.28
  30. Cheng L, 2014, KIDNEY INT, V86, P433, DOI 10.1038/ki.2013.502
  31. Chernyshev VS, 2015, ANAL BIOANAL CHEM, V407, P3285, DOI 10.1007/s00216-015-8535-3
  32. Chevillet JR, 2014, P NATL ACAD SCI USA, V111, P14888, DOI 10.1073/pnas.1408301111
  33. Choi DS, 2015, MASS SPECTROM REV, V34, P474, DOI 10.1002/mas.21420
  34. Choi DS, 2013, PROTEOMICS, V13, P1554, DOI 10.1002/pmic.201200329
  35. Choi HI, 2017, EXP MOL MED, V49, DOI 10.1038/emm.2017.47
  36. Colas RA, 2014, AM J PHYSIOL-CELL PH, V307, pC39, DOI 10.1152/ajpcell.00024.2014
  37. Coleman BM, 2012, FASEB J, V26, P4160, DOI 10.1096/fj.11-202077
  38. Coman C, 2016, MOL CELL PROTEOMICS, V15, P1453, DOI 10.1074/mcp.M115.053702
  39. Conde-Vancells J, 2008, J PROTEOME RES, V7, P5157, DOI 10.1021/pr8004887
  40. Coumans FAW, 2017, CIRC RES, V120, P1632, DOI 10.1161/CIRCRESAHA.117.309417
  41. Crescitelli R, 2013, J EXTRACELL VESICLES, V2, DOI 10.3402/jev.v2i0.20677
  42. Dalli J., 2016, MICROBIOL SPECTRUM, V4, P37
  43. Dalli J, 2012, BLOOD, V120, pE60, DOI 10.1182/blood-2012-04-423525
  44. Danielson KM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0144678
  45. Davies RT, 2012, LAB CHIP, V12, P5202, DOI 10.1039/c2lc41006k
  46. Del Boccio P, 2012, ELECTROPHORESIS, V33, P689, DOI 10.1002/elps.201100375
  47. Del Re M, 2017, EUR UROL, V71, P680, DOI 10.1016/j.eururo.2016.08.012
  48. Desdin-Mico G, 2017, CELL ADHES MIGR, V11, P127, DOI 10.1080/19336918.2016.1251000
  49. Di Palma S, 2011, J PROTEOME RES, V10, P3814, DOI 10.1021/pr200367p
  50. Di Vizio D, 2009, CANCER RES, V69, P5601, DOI 10.1158/0008-5472.CAN-08-3860
  51. Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635
  52. Domon B, 2010, NAT BIOTECHNOL, V28, P710, DOI 10.1038/nbt.1661
  53. Dragovic RA, 2011, NANOMED-NANOTECHNOL, V7, P780, DOI 10.1016/j.nano.2011.04.003
  54. Egertson JD, 2013, NAT METHODS, V10, P744, DOI 10.1038/nmeth.2528
  55. Eirin A, 2014, GENE, V551, P55, DOI 10.1016/j.gene.2014.08.041
  56. EITAN E, 2017, SCI REP UK, V7
  57. Eldh M, 2012, MOL IMMUNOL, V50, P278, DOI 10.1016/j.molimm.2012.02.001
  58. Enderle D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136133
  59. Fahy E, 2011, BBA-MOL CELL BIOL L, V1811, P637, DOI 10.1016/j.bbalip.2011.06.009
  60. Fendl B, 2016, BIOCHEM BIOPH RES CO, V478, P168, DOI 10.1016/j.bbrc.2016.07.073
  61. FOLCH J, 1957, J BIOL CHEM, V226, P497
  62. FREEDMAN JE, 2016, NAT COMMUN, V7
  63. Gallart-Palau X, 2015, SCI REP-UK, V5, DOI 10.1038/srep14664
  64. Gallien S, 2012, MOL CELL PROTEOMICS, V11, P1709, DOI 10.1074/mcp.O112.019802
  65. Gamez-Valero A, 2016, SCI REP-UK, V6, DOI 10.1038/srep33641
  66. Gardiner C, 2016, J EXTRACELL VESICLES, V5, DOI 10.3402/jev.v5.32945
  67. GEMMELL CH, 1993, J BIOL CHEM, V268, P14586
  68. Gentleman RC, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-10-r80
  69. Ghosh A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110443
  70. Gilani SI, 2017, J AM SOC NEPHROL, V28, P3363, DOI 10.1681/ASN.2016111202
  71. Gillet LC, 2012, MOL CELL PROTEOMICS, V11, DOI 10.1074/mcp.O111.016717
  72. Giusti L, 2008, J PROTEOME RES, V7, P4079, DOI 10.1021/pr8000404
  73. Gonzales PA, 2009, J AM SOC NEPHROL, V20, P363, DOI 10.1681/ASN.2008040406
  74. Gonzalez-Begne M, 2009, J PROTEOME RES, V8, P1304, DOI 10.1021/pr800658c
  75. Greening DW, 2017, EXPERT REV PROTEOMIC, V14, P69, DOI 10.1080/14789450.2017.1260450
  76. Grigor'eva A. E., 2016, Biomeditsinskaya Khimiya, V62, P99, DOI 10.18097/PBMC20166201099
  77. Grigorieff N, 2011, CURR OPIN STRUC BIOL, V21, P265, DOI 10.1016/j.sbi.2011.01.008
  78. Haraszti RA, 2016, J EXTRACELL VESICLES, V5, DOI 10.3402/jev.v5.32570
  79. Heijnen HFG, 1999, BLOOD, V94, P3791
  80. Heinemann ML, 2014, J CHROMATOGR A, V1371, P125, DOI 10.1016/j.chroma.2014.10.026
  81. Herzog R, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-1-r8
  82. Hill AF, 2013, J EXTRACELL VESICLES, V2, DOI 10.3402/jev.v2i0.22859
  83. Hong CS, 2016, J EXTRACELL VESICLES, V5, DOI 10.3402/jev.v5.29289
  84. Hoshino A, 2015, NATURE, V527, P329, DOI 10.1038/nature15756
  85. Huang HG, 2016, MOL CELL PROTEOMICS, V15, P3282, DOI 10.1074/mcp.M115.054551
  86. Huang XY, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-319
  87. Hulspas R, 2009, CYTOM PART B-CLIN CY, V76B, P355, DOI 10.1002/cyto.b.20485
  88. Hunter MP, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003694
  89. Ito T, 2004, LANGMUIR, V20, P6940, DOI 10.1021/la049524t
  90. Jacopo M, 2016, CLIN CHEM, V62, P743, DOI 10.1373/clinchem.2015.251942
  91. Jenjaroenpun P, 2013, PEERJ, V1, DOI 10.7717/peerj.201
  92. Jensen ON, 2006, NAT REV MOL CELL BIO, V7, P391, DOI 10.1038/nrm1939
  93. Jeppesen DK, 2014, J EXTRACELL VESICLES, V3, DOI 10.3402/jev.v3.25011
  94. Kalra H, 2013, PROTEOMICS, V13, P3354, DOI 10.1002/pmic.201300282
  95. Kaminska A., 2016, J DIABETES RES, V2016
  96. Kanwar SS, 2014, LAB CHIP, V14, P1891, DOI 10.1039/c4lc00136b
  97. Kibria G, 2016, SCI REP-UK, V6, DOI 10.1038/srep36502
  98. Kim CW, 2002, CANCER RES, V62, P6312
  99. Kim DJ, 2012, J MOL DIAGN, V14, P71, DOI 10.1016/j.jmoldx.2011.09.002
  100. Kim G, 2012, BIOCONJUGATE CHEM, V23, P2114, DOI 10.1021/bc300339b
  101. Kim YS, 2015, J IMMUNOL, V194, P3361, DOI 10.4049/jimmunol.1402268
  102. Kofeler HC, 2012, METABOLITES, V2, P19, DOI 10.3390/metabo2010019
  103. Koga K, 2005, ANTICANCER RES, V25, P3703
  104. Kowal J, 2016, P NATL ACAD SCI USA, V113, pE968, DOI 10.1073/pnas.1521230113
  105. Kreimer S, 2015, J PROTEOME RES, V14, P2367, DOI 10.1021/pr501279t
  106. Kulak NA, 2014, NAT METHODS, V11, P319, DOI [10.1038/nmeth.2834, 10.1038/NMETH.2834]
  107. Lacroix R, 2012, J THROMB HAEMOST, V10, P437, DOI 10.1111/j.1538-7836.2011.04610.x
  108. Lai CP, 2014, ACS NANO, V8, P483, DOI 10.1021/nn404945r
  109. Lamparski HG, 2002, J IMMUNOL METHODS, V270, P211, DOI 10.1016/S0022-1759(02)00330-7
  110. Lange V, 2008, MOL SYST BIOL, V4, DOI 10.1038/msb.2008.61
  111. Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]
  112. Lasser C, 2012, JOVE-J VIS EXP, DOI 10.3791/3037
  113. Lasser C, 2011, J TRANSL MED, V9, DOI 10.1186/1479-5876-9-9
  114. Laulagnier K, 2004, BIOCHEM J, V380, P161, DOI 10.1042/BJ20031594
  115. Laurent LC, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.26533
  116. Lee EY, 2008, MASS SPECTROM REV, V27, P535, DOI 10.1002/mas.20175
  117. Lefebvre FA, 2016, SCI REP-UK, V6, DOI 10.1038/srep27680
  118. Li B, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-323
  119. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  120. Li L., 2016, JOVE-J VIS EXP, P7
  121. Liang LG, 2017, SCI REP-UK, V7, DOI 10.1038/srep46224
  122. Liao Y, 2014, BIOINFORMATICS, V30, P923, DOI 10.1093/bioinformatics/btt656
  123. Liga A, 2015, LAB CHIP, V15, P2388, DOI 10.1039/c5lc00240k
  124. Linares R, 2017, METHODS MOL BIOL, V1545, P43, DOI 10.1007/978-1-4939-6728-5_4
  125. Llorente A, 2013, BBA-MOL CELL BIOL L, V1831, P1302, DOI 10.1016/j.bbalip.2013.04.011
  126. Lobb RJ, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.27031
  127. Lof L, 2016, SCI REP-UK, V6, DOI 10.1038/srep34358
  128. Looze C, 2009, BIOCHEM BIOPH RES CO, V378, P433, DOI 10.1016/j.bbrc.2008.11.050
  129. Lorincz AM, 2014, J EXTRACELL VESICLES, V3, DOI 10.3402/jev.v3.25465
  130. LOTVALL J, 2014, J EXTRACELL VESICLES, V3
  131. Lunavat TR, 2015, RNA BIOL, V12, P810, DOI 10.1080/15476286.2015.1056975
  132. Maas SLN, 2017, METHODS MOL BIOL, V1545, P21, DOI 10.1007/978-1-4939-6728-5_2
  133. Madison MN, 2017, BIO PROTOC, V7, pe2216, DOI [10.21769/BioProtoc.2216, DOI 10.21769/BIOPROTOC.2216]
  134. Manca ML, 2016, INT J PHARMACEUT, V511, P198, DOI 10.1016/j.ijpharm.2016.07.009
  135. Manterola L, 2014, NEURO-ONCOLOGY, V16, P520, DOI 10.1093/neuonc/not218
  136. Mateescu B, 2017, J EXTRACELL VESICLES, V6, DOI 10.1080/20013078.2017.1286095
  137. Mathivanan S, 2010, MOL CELL PROTEOMICS, V9, P197, DOI 10.1074/mcp.M900152-MCP200
  138. Matyash V, 2008, J LIPID RES, V49, P1137, DOI 10.1194/jlr.D700041-JLR200
  139. Maurer M, 2013, J PROTEOME RES, V12, P1040, DOI 10.1021/pr301009u
  140. Melo SA, 2015, NATURE, V523, P177, DOI 10.1038/nature14581
  141. Melo-Braga MN, 2012, MOL CELL PROTEOMICS, V11, P945, DOI 10.1074/mcp.M112.020214
  142. Meningher T, 2017, J INFECT DIS, V215, P378, DOI 10.1093/infdis/jiw539
  143. Miguet L, 2006, PROTEOMICS, V6, P153, DOI 10.1002/pmic.200500133
  144. Minciacchi VR, 2017, PROSTATE CANCER P D, V20, P251, DOI 10.1038/pcan.2017.7
  145. Miranda KC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096094
  146. Mol EA, 2017, NANOMED-NANOTECHNOL, V13, P2061, DOI 10.1016/j.nano.2017.03.011
  147. Moldovan Leni, 2013, Methods Mol Biol, V1024, P129, DOI 10.1007/978-1-62703-453-1_10
  148. Momen-Heravi F, 2013, BIOL CHEM, V394, P1253, DOI 10.1515/hsz-2013-0141
  149. MOMENHERAVI F, 2012, FRONT PHYSIOL, V3
  150. Montoro-Garcia S, 2012, THROMB HAEMOSTASIS, V108, P373, DOI 10.1160/TH12-02-0120
  151. Mora EM, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17010013
  152. Morales-Kastresana A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01731-2
  153. Moremen KW, 2012, NAT REV MOL CELL BIO, V13, P448, DOI 10.1038/nrm3383
  154. Mortazavi A, 2008, NAT METHODS, V5, P621, DOI 10.1038/nmeth.1226
  155. Musante L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037279
  156. Nakai W, 2016, SCI REP-UK, V6, DOI 10.1038/srep33935
  157. Nawaz M, 2014, NAT REV UROL, V11, P688, DOI 10.1038/nrurol.2014.301
  158. Nolan J. P., 2015, CURR PROTOC CYTOM, V73
  159. Nolte-'t Hoen E, 2016, P NATL ACAD SCI USA, V113, P9155, DOI 10.1073/pnas.1605146113
  160. Nolte-'t Hoen ENM, 2012, NUCLEIC ACIDS RES, V40, P9272, DOI 10.1093/nar/gks658
  161. Nordin JZ, 2015, NANOMED-NANOTECHNOL, V11, P879, DOI 10.1016/j.nano.2015.01.003
  162. Ogawa Y, 2008, BIOL PHARM BULL, V31, P1059, DOI 10.1248/bpb.31.1059
  163. Palmisano G, 2012, MOL CELL PROTEOMICS, V11, P1191, DOI 10.1074/mcp.M112.017509
  164. Palomo L, 2014, FRONT IMMUNOL, V5, DOI 10.3389/fimmu.2014.00651
  165. Pedersen KW, 2017, METHODS MOL BIOL, V1660, P65, DOI 10.1007/978-1-4939-7253-1_7
  166. Pegtel DM, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0516
  167. Peterson AC, 2012, MOL CELL PROTEOMICS, V11, P1475, DOI 10.1074/mcp.O112.020131
  168. Pisitkun T, 2004, P NATL ACAD SCI USA, V101, P13368, DOI 10.1073/pnas.0403453101
  169. Porro C, 2010, RESP RES, V11, DOI 10.1186/1465-9921-11-94
  170. Pritchard CC, 2012, CANCER PREV RES, V5, P492, DOI 10.1158/1940-6207.CAPR-11-0370
  171. Quinn RA, 2016, MSYSTEMS, V1, DOI 10.1128/mSystems.00038-16
  172. Raposo G, 2013, J CELL BIOL, V200, P373, DOI 10.1083/jcb.201211138
  173. Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616
  174. Rust MJ, 2006, NAT METHODS, V3, P793, DOI 10.1038/nmeth929
  175. San Lucas FA, 2016, ANN ONCOL, V27, P635, DOI 10.1093/annonc/mdv604
  176. Schorey JS, 2008, TRAFFIC, V9, P871, DOI 10.1111/j.1600-0854.2008.00734.x
  177. Schwudke D, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a004614
  178. Shelke GV, 2014, J EXTRACELL VESICLES, V3, DOI 10.3402/jev.v3.24783
  179. Sherrod SD, 2012, J PROTEOME RES, V11, P3467, DOI 10.1021/pr201240a
  180. Skog J, 2008, NAT CELL BIOL, V10, P1470, DOI 10.1038/ncb1800
  181. Smyth T, 2015, J CONTROL RELEASE, V199, P145, DOI 10.1016/j.jconrel.2014.12.013
  182. Sodar B. W., 2017, EXPERT REV PROTEOMIC, P1
  183. Sodar BW, 2016, SCI REP-UK, V6, DOI 10.1038/srep24316
  184. Sotillo J, 2016, INT J PARASITOL, V46, P1, DOI 10.1016/j.ijpara.2015.09.002
  185. Steen HB, 2004, CYTOM PART A, V57A, P94, DOI 10.1002/cyto.a.10115
  186. Stoner SA, 2016, CYTOM PART A, V89A, P196, DOI 10.1002/cyto.a.22787
  187. Street JM, 2012, J TRANSL MED, V10, DOI 10.1186/1479-5876-10-5
  188. Subra C, 2007, BIOCHIMIE, V89, P205, DOI 10.1016/j.biochi.2006.10.014
  189. Subra C, 2010, J LIPID RES, V51, P2105, DOI 10.1194/jlr.M003657
  190. Subramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102
  191. Takeuchi T, 2015, P NATL ACAD SCI USA, V112, pE2497, DOI 10.1073/pnas.1412651112
  192. Taller D, 2015, LAB CHIP, V15, P1656, DOI 10.1039/c5lc00036j
  193. Tauro BJ, 2012, METHODS, V56, P293, DOI 10.1016/j.ymeth.2012.01.002
  194. Thery C, 2001, J IMMUNOL, V166, P7309, DOI 10.4049/jimmunol.166.12.7309
  195. Thery Clotilde, 2006, Curr Protoc Cell Biol, VChapter 3, DOI 10.1002/0471143030.cb0322s30
  196. Tisoncik-Go J, 2016, CELL HOST MICROBE, V19, P254, DOI 10.1016/j.chom.2016.01.002
  197. Tkach M, 2016, CELL, V164, P1226, DOI 10.1016/j.cell.2016.01.043
  198. Tominaga N, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7716
  199. Tsou CC, 2015, NAT METHODS, V12, P258, DOI [10.1038/NMETH.3255, 10.1038/nmeth.3255]
  200. Vaejo MC, 2012, J PROTEOME RES, V11, P1676, DOI 10.1021/pr200872s
  201. Valadi H, 2007, NAT CELL BIOL, V9, P654, DOI 10.1038/ncb1596
  202. van der Pol E, 2014, J THROMB HAEMOST, V12, P1182, DOI 10.1111/jth.12602
  203. van der Pol E, 2013, J THROMB HAEMOST, V11, P36, DOI 10.1111/jth.12254
  204. Van der Pol E, 2012, J THROMB HAEMOST, V10, P919, DOI 10.1111/j.1538-7836.2012.04683.x
  205. van der Vlist EJ, 2012, NAT PROTOC, V7, P1311, DOI 10.1038/nprot.2012.065
  206. Van Deun J, 2017, NAT METHODS, V14, P228, DOI 10.1038/nmeth.4185
  207. Van Deun J, 2014, J EXTRACELL VESICLES, V3, DOI 10.3402/jev.v3.24858
  208. Venable JD, 2004, NAT METHODS, V1, P39, DOI 10.1038/NMETH705
  209. Vergauwen G, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02599-y
  210. Wahlund Casper J E, 2017, Front Cell Dev Biol, V5, P39, DOI 10.3389/fcell.2017.00039
  211. Wang J, 2016, CELL MOL NEUROBIOL, V36, P449, DOI 10.1007/s10571-016-0345-4
  212. Webber J, 2013, J EXTRACELL VESICLES, V2, DOI 10.3402/jev.v2i0.19861
  213. Wei ZY, 2016, SCI REP-UK, V6, DOI 10.1038/srep31175
  214. Welton JL, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.27269
  215. Wiklander OPB, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.26316
  216. Wisgrill L, 2016, CYTOM PART A, V89A, P663, DOI 10.1002/cyto.a.22892
  217. Witwer KW, 2013, J EXTRACELL VESICLES, V2, DOI 10.3402/jev.v2i0.20360
  218. Wolters DA, 2001, ANAL CHEM, V73, P5683, DOI 10.1021/ac010617e
  219. Wubbolts R, 2003, J BIOL CHEM, V278, P10963, DOI 10.1074/jbc.M207550200
  220. Xu R, 2016, J CLIN INVEST, V126, P1152, DOI 10.1172/JCI81129
  221. Yanez-Mo M, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.27066
  222. Yoo CE, 2012, ANAL BIOCHEM, V431, P96, DOI 10.1016/j.ab.2012.09.008
  223. Yoshioka Y, 2013, J EXTRACELL VESICLES, V2, DOI 10.3402/jev.v2i0.20424
  224. Yu SR, 2015, ONCOTARGET, V6, P37151, DOI 10.18632/oncotarget.6022
  225. Yuan TZ, 2016, SCI REP-UK, V6, DOI 10.1038/srep19413
  226. Yuana Y., 2014, J EXTRACELL VESICLES, V3
  227. Yuana Y, 2013, J EXTRACELL VESICLES, V2, DOI 10.3402/jev.v2i0.21494
  228. Yuana Y, 2015, J EXTRACELL VESICLES, V4, DOI 10.3402/jev.v4.29260
  229. Zhang ZY, 2014, ONCOL LETT, V8, P1701, DOI 10.3892/ol.2014.2373
  230. Zhou H, 2006, KIDNEY INT, V69, P1471, DOI 10.1038/sj.ki.5000273
  231. Zonneveld MI, 2014, J EXTRACELL VESICLES, V3, DOI 10.3402/jev.v3.24215