Relevance of gutmicrobiota in cognition, behaviour and Alzheimer's disease

Carregando...
Imagem de Miniatura
Citações na Scopus
98
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Citação
PHARMACOLOGICAL RESEARCH, v.136, p.29-34, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Approximately 95% of the symbiotic microbes in human body are located in the gut. This microbioma is involved in important homeostatic processes, not only related to gastrointestinal function but also to several complex modulatory processes, such as glucose and bone metabolism, inflammation and immune response, peripheral (enteric) and central neurotransmission. For that reason, recent studies proposed that abnormalities in gut microbiota may play a role in systemic and central nervous system (CNS) conditions. Therefore, the integrity of gut microbiota be relevant to the pathophysiology and control of important medical diseases like diabetes mellitus, inflammatory and autoimmune diseases, and even neuropsychiatric disorders such as depression, autism spectrum disorder, Parkinson's and Alzheimer disease. Gut microbiota may affect brain function and behaviour through the microbiota-gut-brain axis, in bidirectional interplay with top-down and bottom-up regulations. Through metabolic activity of non- pathogenical microorganisms and secretion of functional by-products that increase the permeability of the intestinal mucosa, the gut microbiota influences both the production and absorption of neurotransmitters (e.g., serotonin and GABA), increasing their bioavailability to the CNS. It has been further shown some components of the gut microbiota predominantly bacteria synthesize and release amyloid peptides and lipopolysaccharides, which in turn activate inflammatory signalling through the release of cytokines, with potential effects on the pathophysiological cascade of Alzheimer disease.
Palavras-chave
Gut microbiota, Microbiome, Brain, Cognition, Dementia, Alzheimer's disease
Referências
  1. Al-muzafar H. M., 2017, BMC COMPLEM ALTERN M, V1, P17
  2. Alam MZ, 2014, CNS NEUROL DISORD-DR, V13, P383, DOI 10.2174/18715273113126660151
  3. Alkasir R, 2017, PROTEIN CELL, V8, P90, DOI 10.1007/s13238-016-0338-6
  4. Bailey MT, 2017, BRAIN BEHAV IMMUN, V66, P18, DOI 10.1016/j.bbi.2017.08.017
  5. Bekkering P, 2013, EXPERT REV CLIN IMMU, V9, P1031, DOI 10.1586/1744666X.2013.848793
  6. Bercik P, 2011, NEUROGASTROENT MOTIL, V23, P1132, DOI 10.1111/j.1365-2982.2011.01796.x
  7. Bhat MI, 2017, NUTR REV, V75, P374, DOI 10.1093/nutrit/nux001
  8. Boulange CL, 2016, GENOME MED, V8, DOI 10.1186/s13073-016-0303-2
  9. Caligiuri SPB, 2017, KIDNEY INT, V92, P6, DOI 10.1016/j.kint.2017.05.001
  10. Carlino D, 2013, NEUROSCIENTIST, V19, P345, DOI 10.1177/1073858412469444
  11. Casoli T., 2012, NEUROBIOL AGING, V3, P15
  12. Castellani RJ, 2008, J NEUROPATH EXP NEUR, V67, P523, DOI 10.1097/NEN.0b013e318177eaf4
  13. Cattaneo A, 2017, NEUROBIOL AGING, V49, P60, DOI 10.1016/j.neurobiolaging.2016.08.019
  14. Cryan JF, 2011, NEUROGASTROENT MOTIL, V23, P187, DOI 10.1111/j.1365-2982.2010.01664.x
  15. Cryan JF, 2012, NAT REV NEUROSCI, V13, P701, DOI 10.1038/nrn3346
  16. Date Y, 2000, ENDOCRINOLOGY, V141, P4255, DOI 10.1210/en.141.11.4255
  17. Dziedzic A., 2015, BR DENT J, V6, P226
  18. Erny D, 2015, NAT NEUROSCI, V18, P965, DOI 10.1038/nn.4030
  19. Fewlass DC, 2004, FASEB J, V18, P1870, DOI 10.1096/fj.04-2572com
  20. Finegold SM, 2010, ANAEROBE, V16, P444, DOI 10.1016/j.anaerobe.2010.06.008
  21. Folch J, 2015, LIFE SCI, V140, P19, DOI 10.1016/j.lfs.2015.05.002
  22. Friedland RP, 2015, J ALZHEIMERS DIS, V45, P349, DOI 10.3233/JAD-142841
  23. Gareau MG, 2011, GUT, V60, P307, DOI 10.1136/gut.2009.202515
  24. Gomes S, 2014, J NEUROENDOCRINOL, V26, P176, DOI 10.1111/jne.12138
  25. Gonzalez-Escamilla G, 2016, BRAIN STRUCT FUNCT, V221, P631, DOI 10.1007/s00429-014-0930-6
  26. Grammes P., 2011, J NEUROINFLAMM, V8, P8
  27. Greco SJ, 2010, J ALZHEIMERS DIS, V19, P1155, DOI 10.3233/JAD-2010-1308
  28. Heijtza RD, 2011, P NATL ACAD SCI USA, V108, P3047, DOI 10.1073/pnas.1010529108
  29. Hill J. M., 2015, FRONT AGING NEUROSCI, V10, P7
  30. Hooper LV, 2001, SCIENCE, V292, P1115, DOI 10.1126/science.1058709
  31. Hu X, 2016, SCI CHINA LIFE SCI, V59, P1006, DOI 10.1007/s11427-016-5083-9
  32. Hullmann M., 2017, PART FIBRE TOXICOL, V1, P14
  33. Itzhaki RF, 2016, J ALZHEIMERS DIS, V51, P979, DOI 10.3233/JAD-160152
  34. Jenkins TA, 2016, NUTRIENTS, V8, DOI 10.3390/nu8010056
  35. Ji Y, 2011, CURR OPIN CLIN NUTR, V14, P315, DOI 10.1097/MCO.0b013e3283476e74
  36. Keaney J, 2015, FEBS J, V282, P4067, DOI 10.1111/febs.13412
  37. Kosiewicz MM, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00180
  38. Ley RE, 2006, NATURE, V444, P1022, DOI [10.1038/4441022a, 10.1038/nature4441022a]
  39. Li C. Q., 2016, FRONT CELL NEUROSCI, V1, P10
  40. Lim J. S., 2017, MOL BRAIN, V20, P10
  41. Liu ZJ, 2013, SEMIN CANCER BIOL, V23, P543, DOI 10.1016/j.semcancer.2013.09.002
  42. Luo J, 2014, SCI CHINA LIFE SCI, V57, P327, DOI 10.1007/s11427-014-4615-4
  43. Lyte M, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003726
  44. Martin R., 2016, PLOS ONE, V6, P58
  45. Mennini M, 2017, FRONT PEDIATR, V5, DOI 10.3389/fped.2017.00165
  46. Moon M, 2011, J ALZHEIMERS DIS, V23, P147, DOI 10.3233/JAD-2010-101263
  47. Naseer MI, 2014, CNS NEUROL DISORD-DR, V13, P305, DOI 10.2174/18715273113126660147
  48. Naseribafrouei A, 2014, NEUROGASTROENT MOTIL, V26, P1155, DOI 10.1111/nmo.12378
  49. Negi S., 2017, PLOS ONE
  50. Nelson PT, 2009, J NEUROPATH EXP NEUR, V68, P1, DOI 10.1097/NEN.0b013e3181919a48
  51. Neufeld KM, 2011, NEUROGASTROENT MOTIL, V23, DOI 10.1111/j.1365-2982.2010.01620.x
  52. Niedowicz D. M., 2013, BIOCHIM BIOPHYS ACTA, V3, P439
  53. Palm NW, 2015, CLIN IMMUNOL, V159, P122, DOI 10.1016/j.clim.2015.05.014
  54. Pasinetti GM, 2010, NUTR DIET SUPPL, V2, P97, DOI 10.2147/NDS.S6898
  55. Martinez GP, 2014, BENEF MICROBES, V5, P235, DOI 10.3920/BM2013.0079
  56. Perez-Pardo P, 2017, FRONT AGING NEUROSCI, V9, DOI 10.3389/fnagi.2017.00057
  57. Petra AI, 2015, CLIN THER, V37, P984, DOI 10.1016/j.clinthera.2015.04.002
  58. Potgieter M, 2015, FEMS MICROBIOL REV, V39, P567, DOI 10.1093/femsre/fuv013
  59. Qin JJ, 2012, NATURE, V490, P55, DOI 10.1038/nature11450
  60. Rosshart SP, 2017, CELL, V171, P1015, DOI 10.1016/j.cell.2017.09.016
  61. Russo R., 2017, CURR MED CHEM, V16
  62. Sakata I., 2010, INT J PEPT, V1, P45
  63. Sampson TR, 2015, CELL HOST MICROBE, V17, P565, DOI 10.1016/j.chom.2015.04.011
  64. Savignac HM, 2013, NEUROCHEM INT, V63, P756, DOI 10.1016/j.neuint.2013.10.006
  65. Scheperjans F, 2016, NEURODEGENER DIS MAN, V6, P81, DOI 10.2217/nmt-2015-0012
  66. Scheperjans F, 2015, MOVEMENT DISORD, V30, P350, DOI 10.1002/mds.26069
  67. Shoemark DK, 2015, J ALZHEIMERS DIS, V43, P725, DOI 10.3233/JAD-141170
  68. Sims R, 2009, NEUROSCI LETT, V461, P54, DOI 10.1016/j.neulet.2009.05.051
  69. Stoyanova II, 2014, NEUROBIOL DIS, V72, P72, DOI [10.1016/j.nbd2014.08.026, 10.1016/j.nbd.2014.08.026]
  70. Sudo N, 2004, J PHYSIOL-LONDON, V558, P263, DOI 10.1113/jphysiol.2004.063388
  71. Tillisch K, 2013, GASTROENTEROLOGY, V144, P1394, DOI 10.1053/j.gastro.2013.02.043
  72. Diaz-Gerevini GT, 2016, NUTRITION, V32, P174, DOI 10.1016/j.nut.2015.08.017
  73. Tremlett H, 2017, ANN NEUROL, V81, P369, DOI 10.1002/ana.24901
  74. Tremlett H, 2016, J NEUROL SCI, V363, P153, DOI 10.1016/j.jns.2016.02.042
  75. Wang DJ, 2015, MOL NUTR FOOD RES, V59, P1025, DOI 10.1002/mnfr.201400544
  76. Wang HX, 2016, CHINESE MED J-PEKING, V129, P2373, DOI 10.4103/0366-6999.190667
  77. Wang T, 2015, BENEF MICROBES, V6, P707, DOI 10.3920/BM2014.0177
  78. Wu Hsin-Jung, 2012, Gut Microbes, V3, P4, DOI 10.4161/gmic.19320
  79. Yanagi H, 2017, BMJ OPEN GASTROENTER, V4, DOI 10.1136/bmjgast-2017-000182
  80. Yano J. M., 2005, CELL, V61, P264
  81. Zhao YH, 2017, FRONT CELL INFECT MI, V7, DOI 10.3389/fcimb.2017.00318
  82. Zheng X, 2015, NEUROPHARMACOLOGY, V96, P94, DOI 10.1016/j.neuropharm.2014.06.020