HLA-C downregulation by HIV-1 adapts to host HLA genotype

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
BECHTEL, Nathaniel D.
UMVILIGIHOZO, Gisele
PICKERING, Suzanne
MOTA, Talia M.
LIANG, Hua
PRETE, Gregory Q. Del
CHATTERJEE, Pramita
LEE, Guinevere Q.
THOMAS, Rasmi
BROCKMAN, Mark A.
Citação
PLOS PATHOGENS, v.14, n.9, article ID e1007257, 25p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the magnitude of this downregulation varies widely between primary HIV-1 variants. The selection pressures that result in viral downregulation of HLA-C in some individuals, but preservation of surface HLA-C in others are not clear. To better understand viral immune evasion targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1 viruses. 128 replication competent viral isolates from 19 individuals with effective anti-retroviral therapy, show that a substantial minority of individuals harbor latent reservoir virus which strongly downregulates HLA-C. Untreated infections display no change in HLA-C downregulation during the first 6 months of infection, but variation between viral quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of 195 treatment naive individuals in chronic infection demonstrate that downregulation of HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for downregulation, and individuals with higher levels of HLA-C expression favor greater viral downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C, which determine interactions between Vpu and HLA. The observed adaptation of Vpu-mediated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of mediating a CTL response that is subverted by viral downregulation, and that preservation of HLA-C expression is favored in the absence of these responses. Finding that latent reservoir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy approaches in some individuals.
Palavras-chave
Referências
  1. Apps R, 2016, CELL HOST MICROBE, V19, P686, DOI 10.1016/j.chom.2016.04.005
  2. Apps R, 2015, J IMMUNOL, V194, P3594, DOI 10.4049/jimmunol.1403234
  3. Apps R, 2013, SCIENCE, V340, P87, DOI 10.1126/science.1232685
  4. Baba M, 2000, AIDS RES HUM RETROV, V16, P935, DOI 10.1089/08892220050058344
  5. Bartha I, 2013, ELIFE, V2, DOI 10.7554/eLife.01123
  6. Blais ME, 2012, J IMMUNOL, V188, P4663, DOI 10.4049/jimmunol.1103472
  7. Bongiovanni M, 2006, J ANTIMICROB CHEMOTH, V58, P502, DOI 10.1093/jac/dkl268
  8. BORROW P, 1994, J VIROL, V68, P6103
  9. Braud VM, 1998, CURR BIOL, V8, P1, DOI 10.1016/S0960-9822(98)70014-4
  10. Brockman MA, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00506
  11. Carlson JM, 2016, NAT MED, V22, P606, DOI 10.1038/nm.4100
  12. Carlson JM, 2012, J VIROL, V86, P5230, DOI 10.1128/JVI.06728-11
  13. Carrington M, 2003, ANNU REV MED, V54, P535, DOI 10.1146/annurev.med.54.101601.152346
  14. Cohen GB, 1999, IMMUNITY, V10, P661, DOI 10.1016/S1074-7613(00)80065-5
  15. Collins KL, 1998, NATURE, V391, P397, DOI 10.1038/34929
  16. Davis ZB, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005421
  17. DEACON NJ, 1995, SCIENCE, V270, P988, DOI 10.1126/science.270.5238.988
  18. Ende Z., 2018, J VIROL
  19. Fadda L, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002805
  20. Fellay J, 2007, SCIENCE, V317, P944, DOI 10.1126/science.1143767
  21. Fenton-May AE, 2013, RETROVIROLOGY, V10, DOI 10.1186/1742-4690-10-146
  22. Fogli M, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000101
  23. Foster TL, 2016, CELL HOST MICROBE, V20, P429, DOI 10.1016/j.chom.2016.08.006
  24. Goonetilleke N, 2009, J EXP MED, V206, P1253, DOI 10.1084/jem.20090365
  25. Herschhorn A, 2010, J IMMUNOL, V185, P7623, DOI 10.4049/jimmunol.1001561
  26. Hiby SE, 2004, J EXP MED, V200, P957, DOI 10.1084/jem.20041214
  27. Hirayasu K, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002565
  28. Honda K, 2011, EUR J IMMUNOL, V41, P97, DOI 10.1002/eji.201040841
  29. Honeyborne I, 2010, J VIROL, V84, P11279, DOI 10.1128/JVI.01144-10
  30. Hosmane NN, 2017, J EXP MED, V214, P959, DOI 10.1084/jem.20170193
  31. Hunt PW, 2011, AIDS, V25, P2123, DOI 10.1097/QAD.0b013e32834c4ac1
  32. Iyer SS, 2017, P NATL ACAD SCI USA, V114, pE590, DOI 10.1073/pnas.1620144114
  33. Jones RB, 2016, J CLIN INVEST, V126, P455, DOI 10.1172/JCI80566
  34. KARRE K, 1986, NATURE, V319, P675, DOI 10.1038/319675a0
  35. Khakoo SI, 2004, SCIENCE, V305, P872, DOI 10.1126/science.1097670
  36. Kiepiela P, 2004, NATURE, V432, P769, DOI 10.1038/nature03113
  37. KIRCHHOFF F, 1995, NEW ENGL J MED, V332, P228, DOI 10.1056/NEJM199501263320405
  38. Korner C, 2017, CELL HOST MICROBE, V22, P111, DOI 10.1016/j.chom.2017.06.008
  39. KOUP RA, 1994, J VIROL, V68, P4650
  40. Kueck T, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002609
  41. Laird GM, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003398
  42. Lin ZS, 2016, CELL REP, V17, P2210, DOI 10.1016/j.celrep.2016.10.075
  43. Lynch RM, 2012, J VIROL, V86, P7588, DOI 10.1128/JVI.00734-12
  44. Makadzange AT, 2010, EUR J IMMUNOL, V40, P1036, DOI 10.1002/eji.200939634
  45. Mann JK, 2013, RETROVIROLOGY, V10, DOI 10.1186/1742-4690-10-100
  46. Martini M, 2018, J DAIRY RES, V85, P445, DOI [10.1017/S0022029918000687, 10.1080/02770903.2018.1471705]
  47. Nattermann J, 2005, ANTIVIR THER, V10, P95
  48. Ndhlovu ZM, 2015, IMMUNITY, V43, P591, DOI 10.1016/j.immuni.2015.08.012
  49. Neil SJD, 2008, NATURE, V451, P425, DOI 10.1038/nature06553
  50. Nou E, 2009, J VIROL, V83, P6941, DOI 10.1128/JVI.00306-09
  51. Parham P, 2005, NAT REV IMMUNOL, V5, P201, DOI 10.1038/nri1570
  52. Parolini F., 2017, J VIROL JVI
  53. Parrish NF, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002686
  54. Patterson S, 2015, INT J EPIDEMIOL, V44, P58, DOI 10.1093/ije/dyu046
  55. Pereyra FP, 2010, SCIENCE, V330, P1551, DOI 10.1126/science.1195271
  56. Pickering S, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1003895
  57. R Development Core Team, 2017, R LANG ENV STAT COMP
  58. Rahimi A, 2017, J VIROL METHODS, V240, P32, DOI 10.1016/j.jviromet.2016.11.004
  59. Robinson J, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006862
  60. Romani B, 2017, SCI REP-UK, V7, DOI 10.1038/srep44894
  61. Sauter D, 2015, CELL REP, V10, P586, DOI 10.1016/j.celrep.2014.12.047
  62. Schwartz O, 1996, NAT MED, V2, P338, DOI 10.1038/nm0396-338
  63. Shah AH, 2010, CELL HOST MICROBE, V8, P397, DOI 10.1016/j.chom.2010.10.008
  64. Specht A, 2010, J VIROL, V84, P7300, DOI 10.1128/JVI.00619-10
  65. Stoll A, 2015, J IMMUNOL METHODS, V418, P9, DOI 10.1016/j.jim.2015.01.005
  66. Swigut T, 2004, J VIROL, V78, P13335, DOI 10.1128/JVI.78.23.13335-13344.2004
  67. Thammavongsa V, 2009, IMMUNOGENETICS, V61, P703, DOI 10.1007/s00251-009-0399-2
  68. Thomas R, 2009, NAT GENET, V41, P1290, DOI 10.1038/ng.486
  69. Tremblay-McLean A, 2017, VIRUSES-BASEL, V9, DOI 10.3390/v9100295
  70. WILLEY RL, 1992, J VIROL, V66, P7193
  71. Yang OO, 1996, J VIROL, V70, P5799
  72. Zhang H, 2015, BBA-BIOMEMBRANES, V1848, P3007, DOI 10.1016/j.bbamem.2015.09.008