Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species

Carregando...
Imagem de Miniatura
Citações na Scopus
28
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
LIM, Shen Jean
DAVIS, Brenton G.
WALTON, Jillian
NACHMAN, Erika
ENGEL, Annette Summers
ANDERSON, Laurie C.
CAMPBELL, Barbara J.
Citação
ISME JOURNAL, v.13, n.4, p.902-920, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Lucinidae clams harbor gammaproteobacterial thioautotrophic gill endosymbionts that are environmentally acquired. Thioautotrophic lucinid symbionts are related to metabolically similar symbionts associated with diverse marine host taxa and fall into three distinct phylogenetic clades. Most studies on the lucinid-bacteria chemosymbiosis have been done with seagrass-dwelling hosts, whose symbionts belong to the largest phylogenetic clade. In this study, we examined the taxonomy and functional repertoire of bacterial endosymbionts at an unprecedented resolution from Phacoides pectinatus retrieved from mangrove-lined coastal sediments, which are underrepresented in chemosymbiosis studies. The P. pectinatus thioautotrophic endosymbiont expressed metabolic gene variants for thioautotrophy, respiration, and nitrogen assimilation distinct from previously characterized lucinid thioautotrophic symbionts and other marine symbionts. At least two other bacterial species with different metabolisms were also consistently identified in the P. pectinatus gill microbiome, including a Kistimonas-like species and a Spirochaeta-like species. Bacterial transcripts involved in adhesion, growth, and virulence and mixotrophy were highly expressed, as were host-related hemoglobin and lysozyme transcripts indicative of sulfide/oxygen/CO2 transport and bactericidal activity. This study suggests the potential roles of P. pectinatus and its gill microbiome species in mangrove sediment biogeochemistry and offers insights into host and microbe metabolisms in the habitat.
Palavras-chave
Referências
  1. Agarwala R, 2016, NUCLEIC ACIDS RES, V44, pD7, DOI 10.1093/nar/gkv1290
  2. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2
  3. Ankrah NYD, 2017, J BACTERIOL, V199, DOI 10.1128/JB.00872-16
  4. Antipov D, 2016, BIOINFORMATICS, V32, P1009, DOI 10.1093/bioinformatics/btv688
  5. Aziz RK, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-75
  6. Ball AD, 2009, J MOLLUS STUD, V75, P175, DOI 10.1093/mollus/eyp009
  7. Bateman A, 2015, NUCLEIC ACIDS RES, V43, pD204, DOI 10.1093/nar/gku989
  8. Blazejak A, 2005, APPL ENVIRON MICROB, V71, P1553, DOI 10.1128/AEM.71.3.1553-1561.2005
  9. Bowers RM, 2017, NAT BIOTECHNOL, V35, P725, DOI 10.1038/nbt.3893
  10. Brissac T, 2011, FEMS MICROBIOL ECOL, V75, P63, DOI 10.1111/j.1574-6941.2010.00989.x
  11. Brissac T, 2009, FEMS MICROBIOL ECOL, V67, P261, DOI 10.1111/j.1574-6941.2008.00626.x
  12. Campbell BJ, 2001, APPL ENVIRON MICROB, V67, P110, DOI 10.1128/AEM.67.1.110-117.2001
  13. Cascales E, 2007, MICROBIOL MOL BIOL R, V71, P158, DOI 10.1128/MMBR.00036-06
  14. Cavanaugh CM, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 1, THIRD EDITION, P475, DOI 10.1007/0-387-30741-9_18
  15. Choi EJ, 2010, INT J SYST EVOL MICR, V60, P938, DOI 10.1099/ijs.0.014282-0
  16. Christo SW, 2016, BRAZ J BIOL, V76, P300, DOI 10.1590/1519-6984.12514
  17. DANDO PR, 1986, PROC R SOC SER B-BIO, V227, P227, DOI 10.1098/rspb.1986.0021
  18. de Almeida A, 2007, APPL ENVIRON MICROB, V73, P7912, DOI 10.1128/AEM.01900-07
  19. Delepelaire P, 2004, BBA-MOL CELL RES, V1694, P149, DOI 10.1016/j.bbamcr.2004.05.001
  20. DELONG EF, 1989, SCIENCE, V243, P1360, DOI 10.1126/science.2466341
  21. Ding JY, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00251
  22. Dirks RM, 2004, P NATL ACAD SCI USA, V101, P15275, DOI 10.1073/pnas.0407024101
  23. Dmytrenko O, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-924
  24. Dolan SK, 2018, MICROBIOL-SGM, V164, P251, DOI 10.1099/mic.0.000604
  25. Doty TW, 2015, THESIS
  26. Dubilier N, 1999, MAR ECOL PROG SER, V178, P271, DOI 10.3354/meps178271
  27. Dubilier N, 2008, NAT REV MICROBIOL, V6, P725, DOI 10.1038/nrmicro1992
  28. Duperron S, 2007, FEMS MICROBIOL ECOL, V59, P64, DOI 10.1111/j.1574-6941.2006.00194.x
  29. Duperron S, 2012, MICROBIOLOGYOPEN, V1, P467, DOI 10.1002/mbo3.47
  30. Durand P, 1996, MOL MAR BIOL BIOTECH, V5, P37
  31. Eddie BJ, 2013, J BACTERIOL, V195, P399, DOI 10.1128/JB.01342-12
  32. Ehara T, 2002, FEBS LETT, V531, P509, DOI 10.1016/S0014-5793(02)03608-6
  33. Espinosa EP, 2013, J EXP MAR BIOL ECOL, V448, P327, DOI 10.1016/j.jembe.2013.07.015
  34. FISHER MR, 1984, BIOL BULL, V167, P445, DOI 10.2307/1541289
  35. Flood BE, 2015, INT J SYST EVOL MICR, V65, P2522, DOI 10.1099/ijs.0.000295
  36. Frenkiel L, 1996, MAR BIOL, V125, P511
  37. Frenkiel L, 1997, INVERTEBR REPROD DEV, V31, P199, DOI 10.1080/07924259.1997.9672577
  38. Friedrich CG, 2001, APPL ENVIRON MICROB, V67, P2873, DOI 10.1128/AEM.67.7.2873-2882.2001
  39. Fu LM, 2012, BIOINFORMATICS, V28, P3150, DOI 10.1093/bioinformatics/bts565
  40. Gardebrecht A, 2012, ISME J, V6, P766, DOI 10.1038/ismej.2011.137
  41. Ghosh W, 2009, FEMS MICROBIOL REV, V33, P999, DOI 10.1111/j.1574-6976.2009.00187.x
  42. GOOD IJ, 1953, BIOMETRIKA, V40, P237, DOI 10.2307/2333344
  43. Grabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883
  44. Green-Garcia AM, 2008, THESIS
  45. Green-Garcia AM, 2012, ESTUAR COAST SHELF S, V112, P153, DOI 10.1016/j.ecss.2012.07.010
  46. Gros O, 1996, APPL ENVIRON MICROB, V62, P2324
  47. Gros O, 2003, APPL ENVIRON MICROB, V69, P6264, DOI 10.1128/AEM.69.10.6264-6267.2003
  48. Gros O, 1999, INVERTEBR REPROD DEV, V36, P93, DOI 10.1080/07924259.1999.9652683
  49. Gros O, 1998, FEMS MICROBIOL LETT, V160, P257, DOI 10.1111/j.1574-6968.1998.tb12920.x
  50. Guo CM, 2012, TOXICON, V60, P302, DOI 10.1016/j.toxicon.2012.05.001
  51. Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084
  52. Hansen AK, 2011, P NATL ACAD SCI USA, V108, P2849, DOI 10.1073/pnas.1013465108
  53. Harris MA, 2004, NUCLEIC ACIDS RES, V32, pD258, DOI 10.1093/nar/gkh036
  54. HENTSCHEL U, 1995, APPL ENVIRON MICROB, V61, P1630
  55. Higgs ND, 2016, CURR BIOL, V26, P3393, DOI 10.1016/j.cub.2016.10.034
  56. Ikuta T, 2016, ISME J, V10, P990, DOI 10.1038/ismej.2015.176
  57. Jensen SI, 2005, MAR ECOL PROG SER, V293, P49, DOI 10.3354/meps293049
  58. Jensen S, 2010, FEMS MICROBIOL ECOL, V74, P523, DOI 10.1111/j.1574-6941.2010.00981.x
  59. Johnson MA, 2002, B MAR SCI, V71, P1343
  60. Kang DWD, 2015, PEERJ, V3, DOI 10.7717/peerj.1165
  61. Katharios P, 2015, SCI REP-UK, V5, DOI 10.1038/srep17609
  62. Knight JM, 2013, ESTUAR COAST SHELF S, V131, P290, DOI 10.1016/j.ecss.2013.06.024
  63. Konig S, 2017, NAT MICROBIOL, V2, DOI 10.1038/nmicrobiol.2016.193
  64. Konstantinidis KT, 2014, MICROBE, V9, P111, DOI [10.1128/microbe.9.111.1, DOI 10.1128/MICR0BE.9.111.1]
  65. Kopylova E, 2012, BIOINFORMATICS, V28, P3211, DOI 10.1093/bioinformatics/bts611
  66. KRAUS DW, 1990, J BIOL CHEM, V265, P16043
  67. Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]
  68. Lee J, 2012, INT J SYST EVOL MICR, V62, P2865, DOI 10.1099/ijs.0.038422-0
  69. Li B, 2010, BIOINFORMATICS, V26, P493, DOI 10.1093/bioinformatics/btp692
  70. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  71. Liberge M, 2001, MAR BIOL, V139, P401, DOI 10.1007/s002270000526
  72. LILJEDAHL L, 1992, J PALEONTOL, V66, P206, DOI 10.1017/S0022336000033722
  73. Louie TS, 2016, STAND GENOMIC SCI, V11, DOI 10.1186/s40793-016-0191-5
  74. Marie B, 2011, J MOL EVOL, V72, P531, DOI 10.1007/s00239-011-9451-6
  75. Markert S, 2007, SCIENCE, V315, P247, DOI 10.1126/science.1132913
  76. Markert S, 2011, PROTEOMICS, V11, P3106, DOI 10.1002/pmic.201100059
  77. Mendoza M, 2013, DIS AQUAT ORGAN, V106, P31, DOI 10.3354/dao02636
  78. Meyer E, 2008, RAFFLES B ZOOL, P41
  79. Munoz-Elias EJ, 2005, NAT MED, V11, P638, DOI 10.1038/nm1252
  80. Munoz-Elias EJ, 2006, MOL MICROBIOL, V60, P1109, DOI 10.1111/j.1365-2958.2006.05155.x
  81. Nakagawa S, 2014, ISME J, V8, P40, DOI 10.1038/ismej.2013.131
  82. Nguyen NP, 2016, NPJ BIOFILMS MICROBI, V2, DOI 10.1038/npjbiofilms.2016.4
  83. Narasingarao P, 2006, SYST APPL MICROBIOL, V29, P382, DOI 10.1016/j.syapm.2005.12.011
  84. Neave MJ, 2017, SCI REP-UK, V7, DOI 10.1038/srep40579
  85. Neave MJ, 2017, ISME J, V11, P186, DOI 10.1038/ismej.2016.95
  86. Neave MJ, 2016, APPL MICROBIOL BIOT, V100, P8315, DOI 10.1007/s00253-016-7777-0
  87. Parks DH, 2015, GENOME RES, V25, P1043, DOI 10.1101/gr.186072.114
  88. Peng Y, 2012, BIOINFORMATICS, V28, P1420, DOI 10.1093/bioinformatics/bts174
  89. Perez M, 2016, APPL ENVIRON MICROB, V82, P5197, DOI 10.1128/AEM.00953-16
  90. Petersen JM, 2017, NAT MICROBIOL, V2, DOI 10.1038/nmicrobiol.2016.195
  91. Pitcher RS, 2004, BBA-BIOENERGETICS, V1655, P388, DOI 10.1016/j.bbabio.2003.09.017
  92. Ponnudurai R, 2017, ISME J, V11, P463, DOI 10.1038/ismej.2016.124
  93. Quast C, 2013, NUCLEIC ACIDS RES, V41, pD590, DOI 10.1093/nar/gks1219
  94. Rader BA, 2012, BIOL BULL-US, V223, P103, DOI 10.1086/BBLv223n1p103
  95. Raina JB, 2018, BIOL OPEN, V7, DOI 10.1242/bio.032524
  96. READ KRH, 1965, COMP BIOCHEM PHYSIOL, V15, P137
  97. Reynolds LK, 2007, ESTUAR COAST, V30, P482, DOI 10.1007/BF02819394
  98. Rizzi M, 1996, J MOL BIOL, V258, P1, DOI 10.1006/jmbi.1996.0228
  99. Robinson MD, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-3-r25
  100. Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616
  101. Roeselers G, 2010, STAND GENOMIC SCI, V3, P163, DOI 10.4056/sigs.1103048
  102. Ruehland C, 2008, ENVIRON MICROBIOL, V10, P3404, DOI 10.1111/j.1462-2920.2008.01728.x
  103. Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09
  104. Schreiber L, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01042
  105. Shuman KE, 2016, FEMS MICROBIOL LETT, V363, DOI 10.1093/femsle/fnw100
  106. Simao FA, 2015, BIOINFORMATICS, V31, P3210, DOI 10.1093/bioinformatics/btv351
  107. Soto William, 2014, Front Microbiol, V5, P593, DOI 10.3389/fmicb.2014.00593
  108. Stewart FJ, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00134
  109. Sun YY, 2016, FRONT MICROBIOL, V7, DOI [10.3389/fmicb.2010.01320, 10.3389/fmicb.2016.01320]
  110. Sun Y, 2010, INFECT IMMUN, V78, P4667, DOI 10.1128/IAI.00546-10
  111. Surger MJ, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.00374
  112. Tabita FR, 2008, J EXP BOT, V59, P1515, DOI 10.1093/jxb/erm361
  113. Takamatsu N, 1995, FEBS LETT, V377, P373, DOI 10.1016/0014-5793(95)01375-X
  114. Taylor JD, 2000, GEOL SOC SPEC PUBL, V177, P207, DOI 10.1144/GSL.SP.2000.177.01.12
  115. Taylor JD, 2010, TOP GEOBIOL, V33, P107, DOI 10.1007/978-90-481-9572-5_5
  116. Toshchakov SV, 2017, MAR GENOM, V36, P41, DOI 10.1016/j.margen.2017.07.005
  117. van der Heide T, 2012, SCIENCE, V336, P1432, DOI 10.1126/science.1219973
  118. Williams ST, 2004, J MOLLUS STUD, V70, P187, DOI 10.1093/mollus/70.2.187
  119. WITTENBERG JB, 1990, ANNU REV BIOPHYS BIO, V19, P217
  120. Woyke T, 2006, NATURE, V443, P950, DOI 10.1038/nature05192
  121. Zielinski FU, 2009, ENVIRON MICROBIOL, V11, P1150, DOI 10.1111/j.1462-2920.2008.01847.x