Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosis

Carregando...
Imagem de Miniatura
Citações na Scopus
27
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI LTD
Autores
ZHOU, Qihui
LIGUORI, Tacia Tavares Aquinas
KUHN, Philipp Till
RIJN, Patrick van
HARMSEN, Martin C.
Citação
STEM CELLS INTERNATIONAL, article ID 5387850, 14p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction. Progenitor cells cultured on biomaterials with optimal physical-topographical properties respond with alignment and differentiation. Stromal cells from connective tissue can adversely differentiate to profibrotic myofibroblasts or favorably to smooth muscle cells (SMC). We hypothesized that myogenic differentiation of adipose tissue-derived stromal cells (ASC) depends on gradient directional topographic features. Methods. Polydimethylsiloxane (PDMS) samples with nanometer and micrometer directional topography gradients (wavelength49-3, 425nm) were fabricated. ASC were cultured on patterned PDMS and stimulated with TGF-1 to induce myogenic differentiation. Cellular alignment and adhesion were assessed by immunofluorescence microscopy after 24h. After seven days, myogenic differentiation was examined by immunofluorescence microscopy, gene expression, and immunoblotting. Results. Cell alignment occurred on topographies larger than w=1758nm/a=630nm. The number and total area of focal adhesions per cell were reduced on topographies from w=562nm/a=96nm to w=3919nm/a=1430nm. Focal adhesion alignment was increased on topographies larger than w=731nm/a=146nm. Less myogenic differentiation of ASC occurred on topographies smaller than w=784nm/a=209nm. Conclusion. ASC adherence, alignment, and differentiation are directed by topographical cues. Our evidence highlights a minimal topographic environment required to facilitate the development of aligned and differentiated cell layers from ASC. These data suggest that nanotopography may be a novel tool for inhibiting fibrosis.
Palavras-chave
Referências
  1. Abagnale G, 2015, BIOMATERIALS, V61, P316, DOI 10.1016/j.biomaterials.2015.05.030
  2. Aguilar E, 2014, STEM CELLS DEV, V23, P2908, DOI 10.1089/scd.2014.0231
  3. Aji K, 2016, STEM CELLS INT, DOI 10.1155/2016/1267480
  4. Liguori TTA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34747-3
  5. Au P, 2008, BLOOD, V111, P4551, DOI 10.1182/blood-2007-10-118273
  6. Bajek A, 2016, ARCH IMMUNOL THER EX, V64, P443, DOI 10.1007/s00005-016-0394-x
  7. Berginski M. E., 2013, F1000RESEARCH, V2, DOI [10.3410/f1000research.2-68.v1, DOI 10.3410/F1000RESEARCH.2-68.V1]
  8. Biernacka A, 2011, GROWTH FACTORS, V29, P196, DOI 10.3109/08977194.2011.595714
  9. Boroujeni SM, 2016, J BIOMED MATER RES A, V104, P1610, DOI 10.1002/jbm.a.35686
  10. Brohem CA, 2013, INT J COSMETIC SCI, V35, P448, DOI 10.1111/ics.12064
  11. Charest JL, 2006, BIOMATERIALS, V27, P2487, DOI 10.1016/j.biomaterials.2005.11.022
  12. Dan P, 2015, J CELL SCI, V128, P2415, DOI 10.1242/jcs.167783
  13. Dang JM, 2007, ADV MATER, V19, P2775, DOI 10.1002/adma.200602159
  14. Denu RA, 2016, ACTA HAEMATOL-BASEL, V136, P85, DOI 10.1159/000445096
  15. Dobaczewski M, 2011, J MOL CELL CARDIOL, V51, P600, DOI 10.1016/j.yjmcc.2010.10.033
  16. Gautrot JE, 2014, NANO LETT, V14, P3945, DOI 10.1021/nl501248y
  17. Goffin JM, 2006, J CELL BIOL, V172, P259, DOI 10.1083/jcb.200506179
  18. Gong ZD, 2011, METHODS MOL BIOL, V698, P279, DOI 10.1007/978-1-60761-999-4_21
  19. Gong Z, 2009, TISSUE ENG PT A, V15, P319, DOI 10.1089/ten.tea.2008.0161
  20. Gu WD, 2018, J BIOL CHEM, V293, P8089, DOI 10.1074/jbc.RA118.001739
  21. Hajmousa G, 2016, STEM CELLS DEV, V25, P1444, DOI 10.1089/scd.2016.0025
  22. Haniffa MA, 2009, HAEMATOL-HEMATOL J, V94, P258, DOI 10.3324/haematol.13699
  23. HARRIS L, 2002, THE JOURNAL OF SURGI, V168, P306, DOI 10.1016/J.JSS.2009.08.001
  24. Hematti P, 2012, CYTOTHERAPY, V14, P516, DOI 10.3109/14653249.2012.677822
  25. Huang GS, 2015, BIOMATERIALS, V65, P154, DOI 10.1016/j.biomaterials.2015.07.003
  26. Kulangara K, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114698
  27. Kulangara K, 2012, BIOMATERIALS, V33, P4998, DOI 10.1016/j.biomaterials.2012.03.053
  28. Leask A, 2007, CARDIOVASC RES, V74, P207, DOI 10.1016/j.cardiores.2006.07.012
  29. Li JG, 2016, COLLOID SURFACE B, V145, P410, DOI 10.1016/j.colsurfb.2016.05.024
  30. Li Z, 2013, BIOMATERIALS, V34, P7616, DOI 10.1016/j.biomaterials.2013.06.059
  31. Lin SG, 2017, ACTA BIOMATER, V59, P200, DOI 10.1016/j.actbio.2017.07.012
  32. Majd H, 2015, BIOMATERIALS, V54, P136, DOI 10.1016/j.biomaterials.2015.03.027
  33. Mathieu PS, 2012, TISSUE ENG PART B-RE, V18, P436, DOI [10.1089/ten.TEB.2012.0014, 10.1089/ten.teb.2012.0014]
  34. McCloy RA, 2014, CELL CYCLE, V13, P1400, DOI 10.4161/cc.28401
  35. McNamara LE, 2010, J TISSUE ENG, V1, DOI 10.4061/2010/120623
  36. Mushahary D, 2018, CYTOM PART A, V93A, P19, DOI 10.1002/cyto.a.23242
  37. Newman P, 2016, SCI REP-UK, V6, DOI 10.1038/srep37909
  38. Oedayrajsingh-Varma MJ, 2006, CYTOTHERAPY, V8, P166, DOI 10.1080/14653240600621125
  39. Parandakh A, 2018, IN VITRO CELL DEV-AN, V54, P677, DOI 10.1007/s11626-018-0289-8
  40. PARK I, 2002, JOURNAL OF BIOMATERI, V23, P1579, DOI 10.1163/092050611X587538
  41. PARK J, 2002, BIOTECHNOLOGY AND BI, V88, P359, DOI 10.1002/BIT.20250
  42. Parvizi M, 2016, BIOTECHNOL J, V11, P932, DOI 10.1002/biot.201500519
  43. Piersma B, 2015, FRONT MED, V2, DOI 10.3389/fmed.2015.00059
  44. Pohlers D, 2009, BBA-MOL BASIS DIS, V1792, P746, DOI 10.1016/j.bbadis.2009.06.004
  45. Riha GM, 2005, TISSUE ENG, V11, P1535, DOI 10.1089/ten.2005.11.1535
  46. Steward AJ, 2015, J ANAT, V227, P717, DOI 10.1111/joa.12243
  47. Teo BKK, 2013, ACS NANO, V7, P4785, DOI 10.1021/nn304966z
  48. Wang PY, 2012, J MATER SCI-MATER M, V23, P3015, DOI 10.1007/s10856-012-4748-6
  49. WANG Z, 2002, METHODS, V19, P538, DOI 10.1089/TEN.TEC.2012.0472
  50. Yao R, 2015, J BIOMECH ENG-T ASME, V137, DOI 10.1115/1.4029255
  51. Yim EKF, 2007, EXP CELL RES, V313, P1820, DOI 10.1016/j.yexcr.2007.02.031
  52. Yin Z, 2010, BIOMATERIALS, V31, P2163, DOI 10.1016/j.biomaterials.2009.11.083
  53. Zhang XQ, 2017, BIOMATERIALS, V145, P9, DOI 10.1016/j.biomaterials.2017.08.028
  54. Zhou QH, 2017, ACS APPL MATER INTER, V9, P31433, DOI 10.1021/acsami.7b08237
  55. Zhou QH, 2016, ADV MATER INTERFACES, V3, DOI 10.1002/admi.201600275
  56. Zhou QH, 2015, SCI REP-UK, V5, DOI 10.1038/srep16240