Recombinant Strains of Human Parechovirus in Rural Areas in the North of Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
LEAL, Elcio
LUCHS, Adriana
KOMNINAKIS, Shirley Vasconcelos
LOBATO, Marcia Cristina Alves Brito Sayao
BRUSTULIN, Rafael
CHAGAS, Rogerio Togisaki das
ABRAO, Maria de Fatima Neves dos Santos
SOARES, Cassia Vitoria de Deus Alves
Citação
VIRUSES-BASEL, v.11, n.6, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We characterized the 24 nearly full-length genomes of human parechoviruses (PeV) from children in the north of Brazil. The initial phylogenetic analysis indicated that 17 strains belonged to genotype 1, 5 to genotype 4, and 1 to genotype 17. A more detailed analysis revealed a high frequency of recombinant strains (58%): A total of 14 of our PeV-As were chimeric, with four distinct recombination patterns identified. Five strains were composed of genotypes 1 and 5 (Rec1/5); five strains shared a complex mosaic pattern formed by genotypes 4, 5, and 17 (Rec4/17/5); two strains were composed of genotypes 1 and 17 (Rec1/17); and two strains were composed of genotype 1 and an undetermined strain (Rec1/und). Coalescent analysis based on the Vp1 gene, which is free of recombination, indicated that the recombinant strains most likely arose in this region approximately 30 years ago. They are present in high frequencies and are circulating in different small and isolated cities in the state of Tocantins. Further studies will be needed to establish whether the detected recombinant strains have been replacing parental strains or if they are co-circulating in distinct frequencies in Tocantins.
Palavras-chave
parechovirus, picornavirus, virome, recombination, coalescent, Brazil
Referências
  1. Aizawa Y, 2017, J INFECT CHEMOTHER, V23, P419, DOI 10.1016/j.jiac.2017.04.009
  2. Baele G, 2016, SYST BIOL, V65, P250, DOI 10.1093/sysbio/syv083
  3. Benschop KSM, 2008, J GEN VIROL, V89, P1030, DOI 10.1099/vir.0.83498-0
  4. Calvert J, 2010, J GEN VIROL, V91, P1229, DOI 10.1099/vir.0.018747-0
  5. Chiang GPK, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184533
  6. Chuchaona W, 2015, INFECT GENET EVOL, V31, P300, DOI 10.1016/j.meegid.2015.02.003
  7. Cotmore SF, 2014, ARCH VIROL, V159, P1239, DOI 10.1007/s00705-013-1914-1
  8. Costa AC, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10100520
  9. da Costa AC, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30214-1
  10. da Costa AC, 2017, EMERG INFECT DIS, V23, P1742, DOI 10.3201/eid2310.170307
  11. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  12. Drexler JF, 2011, J GEN VIROL, V92, P564, DOI 10.1099/vir.0.022525-0
  13. Drexler JF, 2009, EMERG INFECT DIS, V15, P310, DOI 10.3201/eid1502.081028
  14. Drummond AJ, 2005, MOL BIOL EVOL, V22, P1185, DOI 10.1093/molbev/msi103
  15. Esposito S, 2014, J CLIN VIROL, V60, P84, DOI 10.1016/j.jcv.2014.03.003
  16. Faria NR, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-164
  17. Harvala H, 2010, CURR OPIN INFECT DIS, V23, P224, DOI 10.1097/QCO.0b013e32833890ca
  18. HYYPIA T, 1992, P NATL ACAD SCI USA, V89, P8847, DOI 10.1073/pnas.89.18.8847
  19. Ito M, 2004, J GEN VIROL, V85, P391, DOI 10.1099/vir.0.19456-0
  20. Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404
  21. Li L, 2015, J VIROL METHODS, V213, P139, DOI 10.1016/j.jviromet.2014.12.002
  22. Martin DP, 2015, VIRUS EVOL, V1, DOI 10.1093/ve/vev003
  23. Olijve L, 2018, CLIN MICROBIOL REV, V31, DOI 10.1128/CMR.00047-17
  24. Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083
  25. Price MN, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009490
  26. Rambaut A, 2018, SYST BIOL, V67, P901, DOI 10.1093/sysbio/syy032
  27. Schmidt HA, 2002, BIOINFORMATICS, V18, P502, DOI 10.1093/bioinformatics/18.3.502
  28. STANWAY G, 1994, J VIROL, V68, P8232
  29. Suchard MA, 2018, VIRUS EVOL, V4, DOI 10.1093/ve/vey016
  30. Tapparel C, 2013, INFECT GENET EVOL, V14, P282, DOI 10.1016/j.meegid.2012.10.016
  31. Villanova F, 2016, ARCH VIROL, V161, P1199, DOI 10.1007/s00705-015-2744-0
  32. Williams CH, 2009, J GEN VIROL, V90, P1702, DOI 10.1099/vir.0.008813-0
  33. Yang Z, 2005, SYST BIOL, V54, P455, DOI 10.1080/10635150590945313
  34. Zell R, 2017, J GEN VIROL, V98, P2421, DOI 10.1099/jgv.0.000911
  35. Zhang DL, 2011, CLIN MICROBIOL INFEC, V17, P1563, DOI 10.1111/j.1469-0691.2010.03390.x
  36. Zoll J, 2009, J VIROL, V83, P3379, DOI 10.1128/JVI.02529-08