Modelling an optimum vaccination strategy against ZIKA virus for outbreak use

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
CAMBRIDGE UNIV PRESS
Citação
EPIDEMIOLOGY AND INFECTION, v.147, article ID UNSP e196, 8p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We present a model to optimise a vaccination campaign aiming to prevent or to curb a Zika virus outbreak. We show that the optimum vaccination strategy to reduce the number of cases by a mass vaccination campaign should start when the Aedes mosquitoes' density reaches the threshold of 1.5 mosquitoes per humans, the moment the reproduction number crosses one. The maximum time it is advisable to wait for the introduction of a vaccination campaign is when the first ZIKV case is identified, although this would not be as effective to minimise the number of infections as when the mosquitoes' density crosses the critical threshold. This suboptimum strategy, however, would still curb the outbreak. In both cases, the catch up strategy should aim to vaccinate at least 25% of the target population during a concentrated effort of 1 month immediately after identifying the threshold. This is the time taken to accumulate the herd immunity threshold of 56.5%. These calculations were done based on theoretical assumptions that vaccine implementation would be feasible within a very short time frame.
Palavras-chave
Control strategies, mathematical models, vaccines, Zika virus
Referências
  1. Amaku M, 2014, B MATH BIOL, V76, P697, DOI 10.1007/s11538-014-9939-5
  2. [Anonymous], 2018, PHARM J, V300, DOI [10.1211/PJ.2018.20204340, DOI 10.1211/PJ.2018.20204340]
  3. BLOWER SM, 1994, INT STAT REV, V62, P229, DOI 10.2307/1403510
  4. Chernick MR, 2008, BOOTSTRAP METHODS GU
  5. Coelho GE, 2008, MEM I OSWALDO CRUZ, V103, P535, DOI 10.1590/S0074-02762008000600004
  6. GUBLER DJ, 1989, AM J TROP MED HYG, V40, P571
  7. Massad E, 2017, EPIDEMIOL INFECT, V145, P2303, DOI 10.1017/S0950268817001200
  8. Massad Eduardo, 2017, Infect Dis Model, V2, P441, DOI 10.1016/j.idm.2017.12.001
  9. Massad E, 2018, EPIDEMIOL INFECT, V146, P1219, DOI [10.1017/S0950268818001334, 10.1017/s0950268818001334]
  10. Massad E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22590-5
  11. Massad E, 2016, GLOBAL HEALTH ACTION, V9, P1, DOI 10.3402/gha.v9.31669
  12. Netto EM, 2017, MBIO, V8, DOI [10.1128/mBio.01390-17, 10.1128/mbio.01390-17]
  13. O'Reilly KM, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1158-8
  14. Pabbaraju K, 2016, J CLIN VIROL, V83, P66, DOI 10.1016/j.jcv.2016.09.001
  15. Paixao ES, 2018, OPEN FORUM INFECT DI, V5, DOI 10.1093/ofid/ofy073
  16. Pan American Health Organization (PAHO)/ World Health Organization (WHO), 2016, ZIK EP UPD
  17. Pierson TC, 2016, CELL, V167, P625, DOI 10.1016/j.cell.2016.09.020
  18. Quam MB, 2016, J TRAVEL MED, V23, DOI 10.1093/jtm/taw059
  19. Rocklov J, 2016, EBIOMEDICINE, V9, P250, DOI 10.1016/j.ebiom.2016.06.009
  20. Shinohara K, 2016, J TRAVEL MED, V23, DOI 10.1093/jtm/tav011
  21. Sokal A, 2017, J TRAVEL MED, V24, DOI 10.1093/jtm/taw066
  22. Summers DJ, 2015, J TRAVEL MED, V22, P338, DOI 10.1111/jtm.12208
  23. Tebas P, 2017, NEW ENGL J MED, DOI [10.1056/NEJMoa1708120, DOI 10.1056/NEJMOA1708120]
  24. Villela DAM, 2017, EPIDEMIOL INFECT, V145, P1649, DOI 10.1017/S0950268817000358
  25. Wang G, 2018, J TRAVEL MED, V25, DOI 10.1093/jtm/tay022
  26. WHO, 2018, VACC PIP TRACK
  27. WHO, 2018, ZIK VACC DEV TECHN R
  28. Wilder-Smith A, 2017, GLOBAL HEALTH ACTION, V10, DOI 10.1080/16549716.2017.1398485
  29. Wilder-Smith A, 2018, J TRAVEL MED, V25
  30. Wilder-Smith A, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1067-x
  31. World Health Organisation, 2016, ZIK VIR MICR GUILL B