Dysregulation of a specific immune-related network of genes biologically defines a subset of schizophrenia

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2019
Editora
NATURE PUBLISHING GROUP
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
V, Svenja Trossbach
HECHER, Laura
SCHAFFLICK, David
DEENEN, Rene
POPA, Ovidiu
LAUTWEIN, Tobias
TSCHIRNER, Sarah
KOEHRER, Karl
FEHSEL, Karin
PAPAZOVA, Irina
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
TRANSLATIONAL PSYCHIATRY, v.9, article ID UNSP 156, 16p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Currently, the clinical diagnosis of schizophrenia relies solely on self-reporting and clinical interview, and likely comprises heterogeneous biological subsets. Such subsets may be defined by an underlying biology leading to solid biomarkers. A transgenic rat model modestly overexpressing the full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1) protein (tgDISC1 rat) was generated that defines such a subset, inspired by our previous identification of insoluble DISC1 protein in post mortem brains from patients with chronic mental illness. Besides specific phenotypes such as DISC1protein pathology, abnormal dopamine homeostasis, and changes in neuroanatomy and behavior, this animal model also shows subtle disturbances in overarching signaling pathways relevant for schizophrenia. In a reverse-translational approach, assuming that both the animal model and a patient subset share common disturbed signaling pathways, we identified differentially expressed transcripts from peripheral blood mononuclear cells of tgDISC1 rats that revealed an interconnected set of dysregulated genes, led by decreased expression of regulator of G-protein signaling 1 (RGS1), chemokine (C-C) ligand 4 (CCL4), and other immune-related transcripts enriched in T-cell and macrophage signaling and converging in one module after weighted gene correlation network analysis. Testing expression of this gene network in two independent cohorts of patients with schizophrenia versus healthy controls (n = 16/50 and n = 54/45) demonstrated similar expression changes. The two top markers RGS1 and CCL4 defined a subset of 27% of patients with 97% specificity. Thus, analogous aberrant signaling pathways can be identified by a blood test in an animal model and a corresponding schizophrenia patient subset, suggesting that in this animal model tailored pharmacotherapies for this patient subset could be achieved.
Palavras-chave
Referências
  1. an der Heiden W, 2000, EUR ARCH PSY CLIN N, V250, P292, DOI 10.1007/s004060070004
  2. Barch DM, 2012, SCHIZOPHRENIA BULL, V38, P43, DOI 10.1093/schbul/sbr160
  3. Bertram L, 2010, NEURON, V68, P270, DOI 10.1016/j.neuron.2010.10.013
  4. Beumer W, 2012, PSYCHONEUROENDOCRINO, V37, P1901, DOI 10.1016/j.psyneuen.2012.04.001
  5. Bolstad BM, 2003, BIOINFORMATICS, V19, P185, DOI 10.1093/bioinformatics/19.2.185
  6. Bradshaw NJ, 2019, MOL PSYCHIATR, V24, P936, DOI 10.1038/s41380-018-0133-2
  7. Brandon NJ, 2011, NAT REV NEUROSCI, V12, P707, DOI 10.1038/nrn3120
  8. Burel JG, 2017, J IMMUNOL, V198, P1748, DOI 10.4049/jimmunol.1601750
  9. Camargo LM, 2007, MOL PSYCHIATR, V12, P74, DOI 10.1038/sj.mp.4001880
  10. Chan MK, 2015, TRANSL PSYCHIAT, V5, DOI 10.1038/tp.2015.91
  11. Ekelund J, 2001, HUM MOL GENET, V10, P1611, DOI 10.1093/hmg/10.15.1611
  12. Esposito F, 2010, GENES IMMUN, V11, P397, DOI 10.1038/gene.2010.28
  13. Fahrenbach JP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090408
  14. Fillman SG, 2016, MOL PSYCHIATR, V21, P1090, DOI 10.1038/mp.2015.90
  15. GOLD JM, 1993, PSYCHIAT CLIN N AM, V16, P295
  16. Gu JR, 2009, ARTHRITIS RHEUM-US, V60, P3269, DOI 10.1002/art.24968
  17. Habl G, 2012, NEUROPSYCHOBIOLOGY, V66, P57, DOI 10.1159/000337129
  18. Hamburg H, 2016, SCI REP-UK, V6, DOI 10.1038/srep34946
  19. Hennah W, 2003, HUM MOL GENET, V12, P3151, DOI 10.1093/hmg/ddg341
  20. Hennah W, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004906
  21. Hess JL, 2016, SCHIZOPHR RES, V176, P114, DOI 10.1016/j.schres.2016.07.006
  22. Hettema JM, 2013, PSYCHIAT GENET, V23, P56, DOI 10.1097/YPG.0b013e32835d7048
  23. Johnson BA, 2010, GENES IMMUN, V11, P343, DOI 10.1038/gene.2009.81
  24. Kaefer Karola, 2019, Hippocampus, DOI 10.1002/hipo.23076
  25. Karpinski P, 2016, BRAIN BEHAV IMMUN, V54, P194, DOI 10.1016/j.bbi.2016.02.005
  26. KAY SR, 1987, SCHIZOPHRENIA BULL, V13, P261, DOI 10.1093/schbul/13.2.261
  27. Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559
  28. Leliveld SR, 2008, J NEUROSCI, V28, P3839, DOI 10.1523/JNEUROSCI.5389-07.2008
  29. Macosko EZ, 2015, CELL, V161, P1202, DOI 10.1016/j.cell.2015.05.002
  30. Millar JK, 2000, HUM MOL GENET, V9, P1415, DOI 10.1093/hmg/9.9.1415
  31. Muller H, 1997, J CLIN PSYCHOL, V53, P663, DOI 10.1002/(SICI)1097-4679(199711)53:7<663::AID-JCLP4>3.0.CO;2-J
  32. Nestler EJ, 2010, NAT NEUROSCI, V13, P1161, DOI 10.1038/nn.2647
  33. O'Donovan MC, 2016, NAT MED, V22, P1214, DOI 10.1038/nm.4196
  34. Ottis P, 2011, BIOL PSYCHIAT, V70, P604, DOI 10.1016/j.biopsych.2011.03.027
  35. Owen MJ, 2007, SCHIZOPHRENIA BULL, V33, P905, DOI 10.1093/schbul/sbm053
  36. Porteous DJ, 2014, MOL PSYCHIATR, V19, P141, DOI 10.1038/mp.2013.160
  37. Prusiner SB, 2001, NEW ENGL J MED, V344, P1516, DOI 10.1056/NEJM200105173442006
  38. Purcell SM, 2009, NATURE, V460, P748, DOI 10.1038/nature08185
  39. Rangel J, 2008, AM J SURG PATHOL, V32, P1207, DOI 10.1097/PAS.0b013e31816fd53c
  40. Ripke S, 2014, NATURE, V511, P421, DOI 10.1038/nature13595
  41. Roge R, 2012, SCHIZOPHR RES, V140, P204, DOI 10.1016/j.schres.2012.06.020
  42. Sachs NA, 2005, MOL PSYCHIATR, V10, P758, DOI 10.1038/sj.mp.4001667
  43. Satija R, 2015, NAT BIOTECHNOL, V33, P495, DOI 10.1038/nbt.3192
  44. Schwarz E, 2018, AM J MED GENET B, V177, P267, DOI 10.1002/ajmg.b.32547
  45. Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
  46. SHIMBEL ALFONSO, 1953, BULL MATH BIOPHYS, V15, P501, DOI 10.1007/BF02476438
  47. Shoemaker JE, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-460
  48. Sialana FJ, 2018, FRONT MOL NEUROSCI, V11, DOI 10.3389/fnmol.2018.00026
  49. Sinclair D, 2014, BMC PSYCHIATRY, V14, DOI 10.1186/s12888-014-0253-4
  50. Sullivan PF, 2003, ARCH GEN PSYCHIAT, V60, P1187, DOI 10.1001/archpsyc.60.12.1187
  51. Tombaugh TN, 2004, ARCH CLIN NEUROPSYCH, V19, P203, DOI 10.1016/S0887-6177(03)00039-8
  52. Trossbach SV, 2016, MOL PSYCHIATR, V21, P1561, DOI 10.1038/mp.2015.194
  53. Trossbach SV, 2014, BEHAV BRAIN RES, V275, P176, DOI 10.1016/j.bbr.2014.08.064
  54. U. T, 1994, HAWIE R HAMBURG WECH
  55. Veldic M, 2005, P NATL ACAD SCI USA, V102, P2152, DOI 10.1073/pnas.0409665102
  56. Wang AL, 2019, PHARMACOL BIOCHEM BE, V179, P73, DOI 10.1016/j.pbb.2019.02.005
  57. Wang AL, 2017, NEUROBIOL LEARN MEM, V146, P12, DOI 10.1016/j.nlm.2017.10.015
  58. Warbrick T, 2011, PSYCHOPHARMACOLOGY, V215, P333, DOI 10.1007/s00213-010-2145-8
  59. Wu JQ, 2016, BRAIN BEHAV IMMUN, V53, P194, DOI 10.1016/j.bbi.2015.12.010
  60. Yerabham ASK, 2013, BIOL CHEM, V394, P1425, DOI 10.1515/hsz-2013-0178
  61. Young JW, 2009, PHARMACOL THERAPEUT, V122, P150, DOI 10.1016/j.pharmthera.2009.02.004
  62. Zheng GXY, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14049