Effects of transcranial direct current stimulation (tDCS) on balance improvement: a systematic review and meta-analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Citação
SOMATOSENSORY AND MOTOR RESEARCH, v.36, n.2, p.122-135, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Transcranial direct current stimulation (tDCS) has emerged as a promising therapeutic tool to improve balance and optimize rehabilitation strategies. However, current literature shows the methodological heterogeneity of tDCS protocols and results, hindering any clear conclusions about the effects of tDCS on postural control. Objective: Evaluate the effectiveness of tDCS on postural control, and identify the most beneficial target brain areas and the effect on different populations. Methods: Two independent reviewers selected randomized tDCS clinical-trials studies from PubMed, Scopus, Web of Science, and reference lists of retrieved articles published between 1998 and 2017. Most frequently reported centre of pressure (COP) variables were selected for meta-analysis. Other postural control outcomes were discussed in the review. Results: Thirty studies were included in the systematic review, and 11 were submitted to a meta-analysis. A reduction of COP displacement area has been significantly achieved by tDCS, evidencing an improvement in balance control. Individuals with cerebral palsy (CP) and healthy young adults are mostly affected by stimulation. The analysis of the impact of tDCS over different brain areas revealed a significant effect after primary motor cortex (M1) stimulation, however, with no clear results after cerebellar stimulation due to divergent results among studies. Conclusions: tDCS appears to improve balance control, more evident in healthy and CP subjects. Effects are observed when primary MI is stimulated. Cerebellar stimulation should be better investigated.
Palavras-chave
Postural balance, transcranial direct current stimulation, meta-analysis
Referências
  1. Alemdaroglu E, 2017, J PEDIATR NURS, V32, P25, DOI 10.1016/j.pedn.2016.08.005
  2. Babyar S, 2016, BRAIN STIMUL, V9, P796, DOI 10.1016/j.brs.2016.06.053
  3. Baudry S, 2014, NEUROSCIENCE, V275, P162, DOI 10.1016/j.neuroscience.2014.06.021
  4. Biabani M, 2018, REV NEUROSCIENCE, V29, P99, DOI 10.1515/revneuro-2017-0023
  5. Duarte NDC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105777
  6. Chou KL, 2017, J NEUROL SCI, V377, P137, DOI 10.1016/j.jns.2017.04.011
  7. Grecco LAC, 2016, FRONT HUM NEUROSCI, V10, DOI [10.3389/fnhum.2016.00188, 10.3389/fnhum.2016.00361]
  8. Grecco LAC, 2017, DEV NEUROREHABIL, V20, P142, DOI 10.3109/17518423.2016.1139639
  9. Grecco LAC, 2013, BMC PEDIATR, V13, DOI 10.1186/1471-2431-13-168
  10. Grecco LAC, 2015, CLIN REHABIL, V29, P1212, DOI 10.1177/0269215514566997
  11. Concerto C, 2017, SOMATOSENS MOT RES, V34, P80, DOI 10.1080/08990220.2017.1292238
  12. Concerto C, 2016, J EXERC REHABIL, V12, P171, DOI 10.12965/jer.1632628.314
  13. Correa J C Ferrari, 2007, Electromyogr Clin Neurophysiol, V47, P131
  14. Craig CE, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170331
  15. de la Torre J, 2017, J BIOMECH, V65, P161, DOI 10.1016/j.jbiomech.2017.10.013
  16. Deandrea S, 2010, EPIDEMIOLOGY, V21, P658, DOI 10.1097/EDE.0b013e3181e89905
  17. DERSIMONIAN R, 1986, CONTROL CLIN TRIALS, V7, P177, DOI 10.1016/0197-2456(86)90046-2
  18. DerSimonian R, 2015, CONTEMP CLIN TRIALS, V45, P139, DOI 10.1016/j.cct.2015.09.002
  19. Dewar R, 2017, ARCH PHYS MED REHAB, V98, P463, DOI 10.1016/j.apmr.2016.07.021
  20. Duarte M, 2010, REV BRAS FISIOTER, V14, P183, DOI 10.1590/S1413-35552010000300003
  21. Dutta A, 2014, NEUROREHABILITATION, V34, P789, DOI 10.3233/NRE-141077
  22. Edwards DJ, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00243
  23. Elsner B, 2016, COCHRANE DB SYST REV, V7
  24. Elsner B, 2016, J REHABIL MED, V48, P565, DOI 10.2340/16501977-2097
  25. Foerster A, 2017, CEREBELLUM, V16, P872, DOI 10.1007/s12311-017-0863-8
  26. Fruhauf Aline Marina Alves, 2017, J Phys Ther Sci, V29, P2138, DOI 10.1589/jpts.29.2138
  27. Galea JM, 2009, J NEUROSCI, V29, P9115, DOI 10.1523/JNEUROSCI.2184-09.2009
  28. Gramsbergen Albert, 2005, Neural Plasticity, V12, P77, DOI 10.1155/NP.2005.77
  29. Grecco LAC, 2014, BRAZ J PHYS THER, V18, P419, DOI 10.1590/bjpt-rbf.2014.0053
  30. Grimaldi G, 2016, NEUROSCIENTIST, V22, P83, DOI 10.1177/1073858414559409
  31. Grimaldi G, 2013, ANN BIOMED ENG, V41, P2437, DOI 10.1007/s10439-013-0846-y
  32. Gringauz I, 2017, BMC HEALTH SERV RES, V17, DOI 10.1186/s12913-017-2685-2
  33. Hameed MQ, 2017, CURR NEUROL NEUROSCI, V17, DOI 10.1007/s11910-017-0719-0
  34. Hamilton A, 2018, PEDIATR PHYS THER, V30, P291, DOI 10.1097/PEP.0000000000000535
  35. Hashemirad F, 2016, BRAIN COGNITION, V102, P1, DOI 10.1016/j.bandc.2015.11.005
  36. Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557
  37. Hsue BJ, 2009, GAIT POSTURE, V29, P465, DOI 10.1016/j.gaitpost.2008.11.007
  38. Hupfeld KE, 2017, EXP BRAIN RES, V235, P851, DOI 10.1007/s00221-016-4848-5
  39. Inukai Y, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00325
  40. Ioffe ME, 2007, CEREBELLUM, V6, P87, DOI 10.1080/14734220701216440
  41. Ishigaki T, 2016, NEUROREPORT, V27, P1050, DOI 10.1097/WNR.0000000000000654
  42. Jancova Jitka, 2008, Acta Medica (Hradec Kralove), V51, P129
  43. Jayaram G, 2009, J CLIN NEUROPHYSIOL, V26, P272, DOI 10.1097/WNP.0b013e3181af1d41
  44. Kaminski E, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00016
  45. Kaminski E, 2016, CLIN NEUROPHYSIOL, V127, P2455, DOI 10.1016/j.clinph.2016.03.018
  46. Kaminski E, 2013, NEUROSCI LETT, V552, P76, DOI 10.1016/j.neulet.2013.07.034
  47. Kang N, 2016, BRAIN STIMUL, V9, P662, DOI 10.1016/j.brs.2016.05.005
  48. Kaski D, 2014, CLIN REHABIL, V28, P1115, DOI 10.1177/0269215514534277
  49. Kaski D, 2012, J NEUROPHYSIOL, V107, P2493, DOI 10.1152/jn.00223.2011
  50. Kaski D, 2013, NEUROREHAB NEURAL RE, V27, P864, DOI 10.1177/1545968313496328
  51. Lattari E, 2017, NEUROSCI LETT, V636, P165, DOI 10.1016/j.neulet.2016.11.019
  52. Lazzari RD, 2017, J MOTOR BEHAV, V49, P329, DOI 10.1080/00222895.2016.1204266
  53. Lazzari RD, 2015, J PHYS THER SCI, V27, P763, DOI 10.1589/jpts.27.763
  54. Manor B, 2018, NEUROREHAB NEURAL RE, V32, P788, DOI 10.1177/1545968318792616
  55. Manor B, 2016, J COGNITIVE NEUROSCI, V28, P275, DOI 10.1162/jocn_a_00897
  56. Martin AK, 2017, J COGNITIVE NEUROSCI, V29, P1817, DOI 10.1162/jocn_a_01166
  57. Moher D, 2015, SYST REV, V4, DOI 10.1186/2046-4053-4-1
  58. Moseley AM, 2002, AUST J PHYSIOTHER, V48, P43, DOI 10.1016/S0004-9514(14)60281-6
  59. Rivera-Urbina GN, 2017, REV NEUROSCIENCE, V28, P173, DOI 10.1515/revneuro-2016-0045
  60. Nitsche MA, 2000, J PHYSIOL-LONDON, V527, P633, DOI 10.1111/j.1469-7793.2000.t01-1-00633.x
  61. Nitsche MA, 2008, BRAIN STIMUL, V1, P206, DOI 10.1016/j.brs.2008.06.004
  62. Noll DR, 2013, J AM OSTEOPATH ASSOC, V113, P17
  63. Nonnekes J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107731
  64. Palm U, 2016, J NEURAL TRANSM, V123, P1219, DOI 10.1007/s00702-016-1572-z
  65. Poortvliet P, 2018, CLIN NEUROPHYSIOL, V129, P33, DOI 10.1016/j.clinph.2017.09.118
  66. Rosenkranz K, 2000, NEUROSCI LETT, V296, P61, DOI 10.1016/S0304-3940(00)01621-9
  67. Saeys W, 2015, DISABIL REHABIL, V37, P1857, DOI 10.3109/09638288.2014.982834
  68. Saruco E, 2018, NEURAL PLAST, V2018, P1
  69. Saruco E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00509-w
  70. Schniepp R, 2014, J NEUROL, V261, P213, DOI 10.1007/s00415-013-7189-3
  71. Scoppa F, 2013, GAIT POSTURE, V37, P290, DOI 10.1016/j.gaitpost.2012.07.009
  72. Seo HG, 2017, RESTOR NEUROL NEUROS, V35, P527, DOI 10.3233/RNN-170745
  73. Shirota Y, 2014, BRAIN STIMUL, V7, P618, DOI 10.1016/j.brs.2014.01.061
  74. Sohn MK, 2013, ANN REHABIL MED-ARM, V37, P759, DOI 10.5535/arm.2013.37.6.759
  75. Steiner KM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163598
  76. Summers JJ, 2016, AGEING RES REV, V25, P42, DOI 10.1016/j.arr.2015.11.004
  77. Tahtis V, 2014, RESTOR NEUROL NEUROS, V32, P527, DOI 10.3233/RNN-140393
  78. Takakusaki K, 2017, J MOV DISORD, V10, P1, DOI 10.14802/jmd.16062
  79. Verheyden G, 2013, MOVEMENT DISORD, V28, P2040, DOI 10.1002/mds.25640
  80. Xu T, 2017, ARCH PHYS MED REHAB, V99
  81. Yavari F, 2018, NEUROSCI BIOBEHAV R, V85, P81, DOI 10.1016/j.neubiorev.2017.06.015
  82. Yosephi MH, 2018, BRAIN STIMUL, V11, P1239, DOI 10.1016/j.brs.2018.07.044
  83. Zandvliet SB, 2018, CEREBELLUM, V17, P575, DOI 10.1007/s12311-018-0939-0
  84. Zhou DG, 2015, EXP BRAIN RES, V233, P2401, DOI 10.1007/s00221-015-4310-0
  85. Zhou JH, 2014, EUR J NEUROSCI, V39, P1343, DOI 10.1111/ejn.12492