Radionuclide therapy: current status and prospects for internal dosimetry in individualized therapeutic planning

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Citação
CLINICS, v.74, article ID e835, 8p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The efficacy and toxicity of radionuclide therapy are believed to be directly related to the radiation doses received by target tissues; however, nuclear medicine therapy continues to be based primarily on the administration of empirical activities to patients and less frequently on the use of internal dosimetry for individual therapeutic planning. This review aimed to critically describe the techniques and clinical evidence of dosimetry as a tool for therapeutic planning and the main limitations to its implementation in clinical practice. The present article is a nonsystematic review of voxel-based dosimetry. Clinical evidence pointing to a correlation between the radiation dose and therapeutic response in various diseases, such as thyroid carcinoma, neuroendocrine tumors and prostate cancer, is reviewed. Its limitations include technical aspects related to image acquisition and processing and the lack of randomized clinical trials demonstrating the impact of dosimetry on patient therapy. A more widespread use of dosimetry in therapeutic planning involves the development of user-friendly dosimetric protocols and confirmation that dose estimation implies good efficacy and low treatment-related toxicity.
Palavras-chave
Nuclear Medicine, Radionuclide Imaging, In vivo Dosimetry
Referências
  1. Bardies M, 2011, Q J NUCL MED MOL IM, V55, P5
  2. BENUA RS, 1962, AMER J ROENTGENOL RA, V87, P171
  3. Chalkia MT, 2015, AUSTRALAS PHYS ENG S, V38, P7, DOI 10.1007/s13246-014-0312-7
  4. Chiesa C, 2011, Q J NUCL MED MOL IM, V55, P168
  5. Cives M, 2017, CURR ONCOL REP, V19, DOI 10.1007/s11912-017-0567-8
  6. Deandreis D, 2017, J NUCL MED, V58, P717, DOI 10.2967/jnumed.116.179606
  7. Dewaraja Y, 2012, J NUCL MED, V53, DOI 10.2967/jnumed.111.100123
  8. Dewaraja YK, 2013, J NUCL MED, V54, P2182, DOI 10.2967/jnumed.113.122390
  9. Flux GD, 2010, EUR J NUCL MED MOL I, V37, P270, DOI 10.1007/s00259-009-1261-3
  10. Garin E, 2016, EUR J NUCL MED MOL I, V43, P559, DOI 10.1007/s00259-015-3157-8
  11. Garin E, 2015, J NUCL MED, V56, P339, DOI 10.2967/jnumed.114.145177
  12. Gaze MN, 2013, Q J NUCL MED MOL IM, V57, P66
  13. Hanscheid H, 2018, J NUCL MED, V59, P75, DOI 10.2967/jnumed.117.193706
  14. Heikkonen J, 2016, ACTA ONCOL, V55, P1069, DOI 10.1080/0284186X.2016.1182642
  15. Hendlisz A, 2010, J CLIN ONCOL, V28, P3687, DOI 10.1200/JCO.2010.28.5643
  16. Higashi T, 2011, J NUCL MED, V52, P683, DOI 10.2967/jnumed.110.081059
  17. Jentzen W, 2008, EUR J NUCL MED MOL I, V35, P611, DOI 10.1007/s00259-007-0554-7
  18. Jentzen W, 2014, J NUCL MED, V55, P1759, DOI 10.2967/jnumed.114.144089
  19. Kairemo K, 2015, DIAGNOSTICS, V5, P358, DOI 10.3390/diagnostics5030358
  20. Klubo-Gwiezdzinska J, 2011, J CLIN ENDOCR METAB, V96, P3217, DOI 10.1210/jc.2011-0494
  21. Kulkarni K, 2006, THYROID, V16, P1019, DOI 10.1089/thy.2006.16.1019
  22. Kumar C, 2016, INT J RADIAT BIOL, V92, P173, DOI 10.3109/09553002.2016.1144944
  23. Lassmann M, 2013, EUR J NUCL MED MOL I, V40, P207, DOI 10.1007/s00259-012-2265-y
  24. Mattsson S, 2015, RADIAT PROT DOSIM, V165, P416, DOI 10.1093/rpd/ncv061
  25. MAXON HR, 1992, J NUCL MED, V33, P1132
  26. MAXON HR, 1983, NEW ENGL J MED, V309, P937, DOI 10.1056/NEJM198310203091601
  27. Mazzaferri E L, 2000, Endocr Pract, V6, P469
  28. Minguez P, 2015, MED PHYS, V42, P3969, DOI 10.1118/1.4921807
  29. OCONNELL MEA, 1993, RADIOTHER ONCOL, V28, P16, DOI 10.1016/0167-8140(93)90180-G
  30. Parker C, 2013, NEW ENGL J MED, V369, P213, DOI 10.1056/NEJMoa1213755
  31. Pauwels S, 2005, J NUCL MED, V46, p92S
  32. Pereira JM, 2010, HEALTH PHYS, V99, P688, DOI 10.1097/HP.0b013e3181e28cdb
  33. Prideaux AR, 2007, J NUCL MED, V48, P1008, DOI 10.2967/jnumed.106.038000
  34. Salem R, 2016, GASTROENTEROLOGY, V151, P1155, DOI 10.1053/j.gastro.2016.08.029
  35. Sawka AM, 2018, THYROID, V28, P692, DOI 10.1089/thy.2018.0070
  36. SEIDLIN SM, 1946, JAMA-J AM MED ASSOC, V132, P838, DOI 10.1001/jama.1946.02870490016004
  37. Sgouros G, 2004, J NUCL MED, V45, P1366
  38. Sgouros G, 2011, EUR J NUCL MED MOL I, V38, P41, DOI 10.1007/s00259-011-1769-1
  39. Shen S, 2002, J NUCL MED, V43, P1245
  40. Smits MLJ, 2015, CARDIOVASC INTER RAD, V38, P261, DOI 10.1007/s00270-014-1042-7
  41. Stabin M, 2006, PHYS MED BIOL, V51, pR187, DOI 10.1088/0031-9155/51/13/R12
  42. Sudbrock F, 2010, EUR J NUCL MED MOL I, V37, P1279, DOI 10.1007/s00259-010-1391-7
  43. Tong AKT, 2016, BRIT J RADIOL, V89, DOI 10.1259/bjr.20150943
  44. Trieu M, 2016, PEDIATR BLOOD CANCER, V63, P436, DOI 10.1002/pbc.25816
  45. Tung JN, 2018, ONCOTARGET, V9, P4637, DOI 10.18632/oncotarget.23161
  46. Willegaignon J, 2016, ALASBIMN J
  47. Willegaignon J, 2016, NUCL MED COMMUN, V37, P473, DOI 10.1097/MNM.0000000000000465
  48. Willegaignon J, 2012, RADIAT PROT DOSIM, V149, P138, DOI 10.1093/rpd/ncr214
  49. Wilson JS, 2014, EUR J CANCER, V50, P801, DOI 10.1016/j.ejca.2013.11.016