Cognitive changes after tDCS and escitalopram treatment in major depressive disorder: Results from the placebo-controlled ELECT-TDCS trial

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2020
Editora
ELSEVIER
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
GOERIGK, Stephan A.
MOFFA, Adriano H.
VERONEZI, Beatriz P.
NOGUEIRA, Barbara S.
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
JOURNAL OF AFFECTIVE DISORDERS, v.263, p.344-352, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Cognitive deficits in major depressive disorder (MDD) are associated with low quality of life and higher suicide risk. Antidepressant drugs have modest to null effects in improving such deficits. Therefore, we investigated the cognitive effects of transcranial direct current stimulation (tDCS), which is a promising antidepressant non-pharmacological intervention, in MDD. Methods: An exploratory analysis on cognitive performance was conducted in 243 depressed patients from the Escitalopram vs. Electric Current Therapy for Treating Depression Clinical Study (ELECT-TDCS), a sham-controlled study comparing the efficacy of tDCS vs. escitalopram. A neuropsychological battery was applied at baseline and endpoint (10 weeks of treatment) to create composite cognitive scores (processing speed, working memory, and verbal fluency). Linear mixed regression models were used to evaluate changes according to intervention groups, adjusted for confounding variables (age, years of schooling, gender, and benzodiazepine use) and depression improvement. Results: No cognitive deterioration was observed in any group. Patients receiving tDCS presented reduced practice gains compared to placebo in processing speed. In patients receiving escitalopram vs. placebo and in the subgroup of clinical responders ( > 50% depression improvement from baseline), those receiving tDCS vs. placebo presented increased performance in verbal fluency. No significant differences between tDCS and escitalopram groups were detected. Limitations: Absence of healthy controls. Conclusion: Prefrontal tDCS did not lead to cognitive deficits in depressed patients, although it reduced practice effects in processing speed. tDCS responders presented increased performance in verbal fluency. Further investigation of tDCS cognitive effects in depression is warranted.
Palavras-chave
Cognition, Transcranial direct current stimulation (tDCS), Major depressive disorder, Dorsolateral prefrontal cortex, Safety, Psychiatry
Referências
  1. Akiyama T, 2018, J AFFECT DISORDERS, V231, P83, DOI 10.1016/j.jad.2018.01.010
  2. American Psychiatric Association, 2013, DIAGN STAT MAN MENT
  3. Amorim P., 2000, REV BRAS PSIQUIATR, V22, P106, DOI 10.1590/S1516-44462000000300003
  4. Andrade C, 2016, PSYCHIAT CLIN N AM, V39, P513, DOI 10.1016/j.psc.2016.04.004
  5. Antal A, 2017, CLIN NEUROPHYSIOL, V128, P1774, DOI 10.1016/j.clinph.2017.06.001
  6. Aparicio LVM, 2016, BRAIN STIMUL, V9, P671, DOI 10.1016/j.brs.2016.05.004
  7. Bartels C, 2010, BMC NEUROSCI, V11, DOI 10.1186/1471-2202-11-118
  8. Bates D, 2015, J STAT SOFTW, V67, P1, DOI 10.18637/jss.v067.i01
  9. Baune BT, 2018, INT J NEUROPSYCHOPH, V21, P97, DOI 10.1093/ijnp/pyx070
  10. Bikson M, 2016, BRAIN STIMUL, V9, P641, DOI 10.1016/j.brs.2016.06.004
  11. Bora E, 2013, PSYCHOL MED, V43, P2017, DOI 10.1017/S0033291712002085
  12. Borrione L, 2018, J ECT, V34, P153, DOI 10.1097/YCT.0000000000000512
  13. Bortolato B., 2014, CNS NEUROL DISORD DR
  14. Bruder GE, 2014, J AFFECT DISORDERS, V166, P108, DOI 10.1016/j.jad.2014.04.057
  15. Brunelin J, 2012, AM J PSYCHIAT, V169, P719, DOI 10.1176/appi.ajp.2012.11071091
  16. Brunoni AR, 2017, NEW ENGL J MED, V376, P2523, DOI 10.1056/NEJMoa1612999
  17. Brunoni AR, 2019, BRAZ J PSYCHIAT, V41, P70, DOI 10.1590/1516-4446-2017-0018
  18. Brunoni AR, 2013, JAMA PSYCHIAT, V70, P383, DOI 10.1001/2013.jamapsychiatry.32
  19. Brunoni AR, 2016, J AFFECT DISORDERS, V202, P46, DOI 10.1016/j.jad.2016.03.066
  20. Brunoni AR, 2015, SAO PAULO MED J, V133, P252, DOI 10.1590/1516-3180.2014.00351712
  21. Brunoni AR, 2014, BRAIN COGNITION, V86, P1, DOI 10.1016/j.bandc.2014.01.008
  22. Brunoni AR, 2012, BRAIN STIMUL, V5, P175, DOI 10.1016/j.brs.2011.03.002
  23. Brunoni AR, 2011, INT J NEUROPSYCHOPH, V14, P1133, DOI 10.1017/S1461145710001690
  24. Cipriani A, 2009, LANCET, V373, P746, DOI 10.1016/S0140-6736(09)60046-5
  25. Elisabeth M S, 2006, COMPENDIUM NEUROPSYC
  26. Feingold A, 2009, PSYCHOL METHODS, V14, P43, DOI 10.1037/a0014699
  27. Ferrari AJ, 2013, PLOS MED, V10, DOI 10.1371/journal.pmed.1001547
  28. Grimm KJ, 2016, GROWTH MODELING STRU
  29. Grimm S, 2008, BIOL PSYCHIAT, V63, P369, DOI 10.1016/j.biopsych.2007.05.033
  30. Henry JD, 2005, J CLIN EXP NEUROPSYC, V27, P78, DOI 10.1080/138033990513654
  31. Herrera-Guzman I, 2010, PSYCHIAT RES, V177, P323, DOI 10.1016/j.psychres.2010.03.006
  32. HORN JL, 1965, PSYCHOMETRIKA, V30, P179, DOI 10.1007/BF02289447
  33. Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118
  34. Keefe RSE, 2014, J CLIN PSYCHIAT, V75, P864, DOI 10.4088/JCP.13r08609
  35. Kowarik A, 2016, J STAT SOFTW, V74, DOI 10.18637/jss.v074.i07
  36. Lee RSC, 2012, J AFFECT DISORDERS, V140, P113, DOI 10.1016/j.jad.2011.10.023
  37. Liew TM, 2015, J AM MED DIR ASSOC, V16, P144, DOI 10.1016/j.jamda.2014.07.021
  38. Martin DM, 2018, NEUROSCI BIOBEHAV R, V90, P137, DOI 10.1016/j.neubiorev.2018.04.008
  39. Mayberg HS, 2000, BIOL PSYCHIAT, V48, P830, DOI 10.1016/S0006-3223(00)01036-2
  40. Milev RV, 2016, CAN J PSYCHIAT, V61, P561, DOI 10.1177/0706743716660033
  41. Moffa AH, 2017, J AFFECT DISORDERS, V221, P1, DOI 10.1016/j.jad.2017.06.021
  42. Moreno ML, 2015, NEUROSCI LETT, V591, P126, DOI 10.1016/j.neulet.2015.02.036
  43. Nascimento Elizabeth do, 2002, Psicol. Reflex. Crit., V15, P603, DOI 10.1590/S0102-79722002000300014
  44. Nord CL, 2019, NEUROPSYCHOPHARMACOL, V44, P1613, DOI 10.1038/s41386-019-0401-0
  45. Palm U, 2012, BRAIN STIMUL, V5, P242, DOI 10.1016/j.brs.2011.08.005
  46. Peres-Neto PR, 2005, COMPUT STAT DATA AN, V49, P974, DOI 10.1016/j.csda.2004.06.015
  47. Raucher-Chene D, 2017, J AFFECT DISORDERS, V207, P359, DOI 10.1016/j.jad.2016.09.039
  48. Raudenbush SW, 2001, PSYCHOL METHODS, V6, P387, DOI 10.1037//1082-989X.6.4.387
  49. Reitan R. M., 1985, HALSTEAD REITAN NEUR
  50. Rosenblat JD, 2016, INT J NEUROPSYCHOPH, V19, DOI 10.1093/ijnp/pyv082
  51. Sampaio B, 2018, JAMA PSYCHIAT, V75, P158, DOI 10.1001/jamapsychiatry.2017.4040
  52. Sathappan AV, 2019, PROG NEURO-PSYCHOPH, V89, P347, DOI 10.1016/j.pnpbp.2018.10.006
  53. Seibt O, 2015, BRAIN STIMUL, V8, P590, DOI 10.1016/j.brs.2015.01.401
  54. Sellers KK, 2015, BEHAV BRAIN RES, V290, P32, DOI 10.1016/j.bbr.2015.04.031
  55. Snyder HR, 2013, PSYCHOL BULL, V139, P81, DOI 10.1037/a0028727
  56. Team R.C., 2013, R LANG ENV STAT COMP
  57. Thomas-Ollivier V, 2017, PSYCHIAT CLIN NEUROS, V71, P612, DOI 10.1111/pcn.12529
  58. Tortella G, 2014, CNS NEUROL DISORD-DR, V13, P1759
  59. Trivedi MH, 2014, J AFFECT DISORDERS, V152, P19, DOI 10.1016/j.jad.2013.09.012
  60. Van der Loo M.P.J., 2010, DISTRIBUTION BASED O
  61. Wagner S, 2012, ACTA PSYCHIAT SCAND, V125, P281, DOI 10.1111/j.1600-0447.2011.01762.x