Brain activity and medical diagnosis: an EEG study

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2013
Editora
BIOMED CENTRAL LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
BMC NEUROSCIENCE, v.14, article ID 109, 15p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Despite new brain imaging techniques that have improved the study of the underlying processes of human decision-making, to the best of our knowledge, there have been very few studies that have attempted to investigate brain activity during medical diagnostic processing. We investigated brain electroencephalography (EEG) activity associated with diagnostic decision-making in the realm of veterinary medicine using X-rays as a fundamental auxiliary test. EEG signals were analysed using Principal Components (PCA) and Logistic Regression Analysis Results: The principal component analysis revealed three patterns that accounted for 85% of the total variance in the EEG activity recorded while veterinary doctors read a clinical history, examined an X-ray image pertinent to a medical case, and selected among alternative diagnostic hypotheses. Two of these patterns are proposed to be associated with visual processing and the executive control of the task. The other two patterns are proposed to be related to the reasoning process that occurs during diagnostic decision-making. Conclusions: PCA analysis was successful in disclosing the different patterns of brain activity associated with hypothesis triggering and handling (pattern P-1); identification uncertainty and prevalence assessment (pattern P-3), and hypothesis plausibility calculation (pattern P-2); Logistic regression analysis was successful in disclosing the brain activity associated with clinical reasoning success, and together with regression analysis showed that clinical practice reorganizes the neural circuits supporting clinical reasoning.
Palavras-chave
Medical diagnosis, EEG analysis, Brain mapping, Human cognition
Referências
  1. Andres P, 2003, CORTEX, V39, P871, DOI 10.1016/S0010-9452(08)70868-2
  2. Baddeley A, 2000, TRENDS COGN SCI, V4, P417, DOI 10.1016/S1364-6613(00)01538-2
  3. Bechtereva NP, 2004, INT J PSYCHOPHYSIOL, V53, P11, DOI 10.1016/j.ijpsycho.2004.01.001
  4. Bland AR, 2011, BRAIN RES, V1417, P55, DOI 10.1016/j.brainres.2011.08.031
  5. Bordage G, 1997, ACAD MED, V72, pS37
  6. Cabeza R, 1997, J COGNITIVE NEUROSCI, V9, P1, DOI 10.1162/jocn.1997.9.1.1
  7. Cohen MX, 2008, BRAIN RES, V1238, P127, DOI 10.1016/j.brainres.2008.07.114
  8. Cohen MX, 2007, NEUROIMAGE, V35, P968, DOI 10.1016/j.neuroimage.2006.11.056
  9. Davis CE, 2011, INT J PSYCHOPHYSIOL, V79, P175, DOI 10.1016/j.ijpsycho.2010.10.004
  10. Delarme A, 2004, J NEUROSCI METH, V134, P9
  11. Dien J, 2003, COGNITIVE BRAIN RES, V17, P637, DOI 10.1016/S0926-6410(03)00188-5
  12. Dosenbach NUF, 2007, P NATL ACAD SCI USA, V104, P11073, DOI 10.1073/pnas.0704320104
  13. Esposito F, 2009, NEUROIMAGE, V47, P112, DOI 10.1016/j.neuroimage.2009.03.074
  14. Foz FBA, 2001, PEDIATR NEUROL, V26, P106
  15. Hauk O, 2006, NEUROIMAGE, V30, P1383, DOI 10.1016/j.neuroimage.2005.11.048
  16. Heldmann M, 2005, J PSYCHOPHYSIOL, V19, P270, DOI 10.1027/0269-8803.19.4.270
  17. Iturria-Medina Y, 2008, NEUROIMAGE, V40, P1064, DOI 10.1016/j.neuroimage.2007.10.060
  18. Jacobs J, 2006, NEUROIMAGE, V32, P978, DOI 10.1016/j.neuroimage.2006.02.018
  19. Karch S, 2010, NEUROIMAGE, V51, P356, DOI 10.1016/j.neuroimage.2010.02.028
  20. Knottnerus JA, 2002, EVIDENCE BASE CLIN D
  21. Lau B, 2008, NEURON, V58, P451, DOI 10.1016/j.neuron.2008.02.021
  22. LEAO BF, 1990, METHOD INFORM MED, V29, P30
  23. Lindsen JP, 2010, NEUROIMAGE, V50, P1626, DOI 10.1016/j.neuroimage.2010.01.079
  24. Magiameli P, 2004, DEC SUPP SYST, V36, P247
  25. Maguire MJ, 2010, BRAIN LANG, V114, P16, DOI 10.1016/j.bandl.2010.03.005
  26. Mandin H, 1997, ACAD MED, V72, P173, DOI 10.1097/00001888-199703000-00009
  27. Martin-Loeches M, 2008, NEUROIMAGE, V41, P614, DOI 10.1016/j.neuroimage.2008.02.047
  28. Massad E, 2008, STUD FUZZ SOFT COMP, V232, P1
  29. Melo M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028752
  30. Michels L, 2008, NEUROIMAGE, V40, P1296, DOI 10.1016/j.neuroimage.2007.12.048
  31. Mouraux A, 2008, MAGN RESON IMAGING, V26, P1041, DOI 10.1016/j.mri.2008.01.011
  32. Norman G, 2005, MED EDUC, V39, P418, DOI 10.1111/j.1365-2929.2005.02127.x
  33. Olofsson JK, 2008, BIOL PSYCHOL, V77, P247, DOI 10.1016/j.biopsycho.2007.11.006
  34. Pandey B, 2009, COMPUT BIOL MED, V39, P215, DOI 10.1016/j.compbiomed.2008.12.008
  35. Polezzi D, 2010, NEUROIMAGE, V49, P1886, DOI 10.1016/j.neuroimage.2009.08.068
  36. Polezzi D, 2008, BEHAV BRAIN RES, V190, P218, DOI 10.1016/j.bbr.2008.03.003
  37. Pulvermuller F, 2009, BRAIN LANG, V110, P81, DOI 10.1016/j.bandl.2008.12.001
  38. Rocha AF, 1992, LECT NOTES ARTIFICIA
  39. Rocha AF, 2011, PLOS ONE, V6, DOI 10.137/1/journal.pone.001/355
  40. Rocha AF, 2010, BRAIN RES, V1351, P198
  41. Rocha AF, 2004, BRAIN FUZZY ARITHMET
  42. Rocha FT, 2005, COGNITIVE BRAIN RES, V22, P359, DOI 10.1016/j.cogbrainres.2004.09.008
  43. Selimbeyoglu A, 2012, CLIN NEUROPHYSIOL, V123, P1158, DOI 10.1016/j.clinph.2011.10.037
  44. Sieborger FT, 2007, BRAIN RES, V1166, P77, DOI 10.1016/j.brainres.2007.05.079
  45. Tsovara A, 2012, NEUROIMAGE, V60, P1959
  46. Wu X, 2007, NEUROIMAGE, V35, P1654, DOI 10.1016/j.neuroimage.2007.02.011