Discriminating Neoplastic and Normal Brain Tissues in Vitro Through Raman Spectroscopy: A Principal Components Analysis Classification Model

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
MARY ANN LIEBERT, INC
Autores
AGUIAR, Ricardo Pinto
SILVEIRA JR., Landulfo
FALCAO, Edgar Teixeira
PACHECO, Marcos Tadeu Tavares
ZANGARO, Renato Amaro
Citação
PHOTOMEDICINE AND LASER SURGERY, v.31, n.12, p.595-604, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and objective: Because of their aggressiveness, brain tumors can lead to death within a short time after diagnosis. Optical techniques such as Raman spectroscopy may be a technique of choice for in situ tumor diagnosis, with potential use in determining tumor margins during surgery because of its ability to identify biochemical changes between normal and tumor brain tissues quickly and without tissue destruction. Methods: In this work, fragments of brain tumor (glioblastoma, medulloblastoma, and meningioma) and normal tissues (cerebellum and meninges) were obtained from excisional intracranial surgery and from autopsies, respectively. Raman spectra (dispersive spectrometer, 830nm 350mW, 50sec accumulation, total 172 spectra) were obtained in vitro on these fragments. It has been developed as a model to discriminate between the spectra of normal tissue and tumors based on the scores of principal component analysis (PCA) and Euclidean distance. Results: ANOVA indicated that the scores of PC2 and PC3 show differences between normal and tumor groups (p<0.05) which could be employed in a discrimination model. PC2 was able to discriminate glioblastoma from the other tumors and from normal tissues, showing featured peaks of lipids/phospholipids and cholesterol. PC3 discriminated medulloblastoma and meningioma from normal tissues, with the most intense spectral features of proteins. PC3 also discriminated normal tissues (meninges and cerebellum) by the presence of cholesterol peaks. Results indicated a sensitivity and specificity of 97.4% and 100%, respectively, for this in vitro diagnosis of brain tumor. Conclusions: The PCA/Euclidean distance model was effective in differentiating tumor from normal spectra, regardless of the type of tissue (meninges or cerebellum).
Palavras-chave
Referências
  1. Beleites C, 2011, ANAL BIOANAL CHEM, V400, P2801, DOI 10.1007/s00216-011-4985-4
  2. Beljebbar A, 2010, ANAL BIOANAL CHEM, V398, P477, DOI 10.1007/s00216-010-3910-6
  3. Black P. E., 2004, EUCLIDEAN DISTANCE
  4. Bodanese B, 2012, PHOTOMED LASER SURG, V30, P381, DOI 10.1089/pho.2011.3191
  5. Brien J. S., 1965, J LIPID RES, V6, P537
  6. Brien J. S., 1965, J LIPID RES, V6, P545
  7. Chowdary MVP, 2007, PHOTOMED LASER SURG, V25, P269, DOI 10.1089/pho.2006.2066
  8. Dreissig I, 2009, SPECTROCHIM ACTA A, V71, P2069, DOI 10.1016/j.saa.2008.08.008
  9. Dunteman G. H., 1989, PRINCIPAL COMPONENTS
  10. Haka AS, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3247154
  11. Halon E. B., 2000, PHYS MED BIOL, V45, pR1
  12. Harris A. T., 2009, HEAD NECK ONCOL, V1, P1
  13. Huang ZW, 2010, BIOSENS BIOELECTRON, V26, P383, DOI 10.1016/j.bios.2010.07.125
  14. Instituto Nacional de Cancer Jose Alencar Gomes da Silva-INCA, 2011, EST 2012 CANC INC BR
  15. Jansen M. A., 2011, J BIOMED OPT, V16
  16. Kanter EM, 2009, J RAMAN SPECTROSC, V40, P205, DOI 10.1002/jrs.2108
  17. Kirsch M, 2010, ANAL BIOANAL CHEM, V398, P1707, DOI 10.1007/s00216-010-4116-7
  18. Kohler M, 2009, ANAL BIOANAL CHEM, V393, P1513, DOI 10.1007/s00216-008-2592-9
  19. Koljenovic S, 2002, LAB INVEST, V82, P1265, DOI 10.1097/01.LAB.0000032545.96931.B8
  20. Krafft C, 2005, SPECTROCHIM ACTA A, V61, P1529, DOI 10.1016/j.saa.2004.11.017
  21. Krafft C, 2012, ANALYST, V137, P5533, DOI 10.1039/c2an36083g
  22. Krafft C, 2005, ANALYST, V130, P1070, DOI 10.1039/b419232j
  23. Leslie DG, 2012, PEDIATR NEUROSURG, V48, P109, DOI 10.1159/000343285
  24. Lopes M. B. S., 2009, MENINGIOMAS DIAGNOSI, P25, DOI 10.1007/978-1-84628-784-8_4
  25. Louis DN, 2007, ACTA NEUROPATHOL, V114, P97, DOI 10.1007/s00401-007-0243-4
  26. Maheedhar K., 2011, PATHOLOG RES INT, V2011
  27. McCreery R.L., 2000, RAMAN SPECTROSCOPY C
  28. Meyer T, 2011, J BIOMED OPT, V16, DOI 10.1117/1.3533268
  29. Montagnani S., 2000, Italian Journal of Anatomy and Embryology, V105, P167
  30. Movasaghi Z, 2007, APPL SPECTROSC REV, V42, P493, DOI 10.1080/05704920701551530
  31. Nogueira GV, 2005, J BIOMED OPT, V10, DOI 10.1117/1.1908129
  32. Okamoto H, 2006, J PHASE EQUILIB DIFF, V27, P204, DOI 10.1361/154770306X97768
  33. Quarles R., 2005, BASIC NEUROCHEMISTRY, P51
  34. Schrader B., 1989, RAMAN INFRARED ATLAS
  35. Oliveira AP, 2006, PHOTOMED LASER SURG, V24, P348, DOI 10.1089/pho.2006.24.348
  36. Silveira L, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.7.077003
  37. Stone N, 2004, FARADAY DISCUSS, V126, P141, DOI 10.1039/b304992b
  38. Stone N, 2007, ANAL BIOANAL CHEM, V387, P1657, DOI 10.1007/s00216-006-0937-9
  39. SUN GY, 1973, J LIPID RES, V14, P656
  40. Suzuki K., 1981, BASIC NEUROCHEMISTRY, P355
  41. Teh SK, 2010, BRIT J SURG, V97, P550, DOI 10.1002/bjs.6913
  42. Vargis E, 2012, TRANSL ONCOL, V5, P172, DOI 10.1593/tlo.12106
  43. YATES AJ, 1979, J LIPID RES, V20, P428
  44. Zhou Y, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.11.116021