Lifetime cannabis use and childhood trauma increase risk of psychosis in carriers of CNR1 genetic variants: findings from the STREAM study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC BRASILEIRA PSIQUIATRIA
Autores
LOUREIRO, Camila Marcelino
CORSI-ZUELLI, Fabiana
FACHIM, Helene Aparecida
SHUHAMA, Rosana
OLIVEIRA, Adrielle Martins de
DALTON, Caroline F.
LOUZADA-JUNIOR, Paulo
BELANGERO, Sintia Iole
COELI-LACCHINI, Fernanda
Citação
BRAZILIAN JOURNAL OF PSYCHIATRY, v.45, n.3, p.226-235, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: Gene-environment interactions increase the risk of psychosis. The objective of this study was to investigate gene-gene and gene-environment interactions in psychosis, including single nucleotide variants (SNVs) of dopamine-2 receptor (D2R), N-methyl-d-aspartate receptor (NMDAR), and cannabinoid receptor type 1 (CB1R), lifetime cannabis use, and childhood trauma.Methods: Twenty-three SNVs of genes encoding D2R (DRD2: rs1799978, rs7131056, rs6275), NMDAR (GRIN1: rs4880213, rs11146020; GRIN2A: rs1420040, rs11866328; GRIN2B: rs890, rs2098469, rs7298664), and CB1R (CNR1: rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898) were genotyped in 143 first-episode psychosis patients (FEPp) and 286 communitybased controls by Illumina HumanCoreExome-24 BeadChip. Gene-gene and gene-environment associations were assessed using nonparametric Multifactor Dimensionality Reduction software.Results: Single-locus analyses among the 23 SNVs for psychosis and gene-gene interactions were not significant (p 4 0.05 for all comparisons); however, both environmental risk factors showed an association with psychosis (p < 0.001). Moreover, gene-environment interactions were significant for an SNV in CNR1 and cannabis use. The best-performing model was the combination of CNR1 rs12720071 and lifetime cannabis use (p < 0.001), suggesting an increased risk of psychosis.Conclusion: Our study supports the hypothesis of gene-environment interactions for psychosis involving T-allele carriers of CNR1 SNVs, childhood trauma, and cannabis use.
Palavras-chave
Cannabis use, childhood trauma, first-episode psychosis, single nucleotide variants
Referências
  1. AKIRA S, 1990, EMBO J, V9, P1897, DOI 10.1002/j.1460-2075.1990.tb08316.x
  2. Altshuler DM, 2015, NATURE, V526, P68, DOI 10.1038/nature15393
  3. Bernstein DP, 2003, CHILD ABUSE NEGLECT, V27, P169, DOI 10.1016/S0145-2134(02)00541-0
  4. Crippa JAS, 2001, ACTA PSYCHIAT SCAND, V103, P465, DOI 10.1034/j.1600-0447.2001.00185.x
  5. Del-Ben CM, 2019, BRIT J PSYCHIAT, V215, P726, DOI 10.1192/bjp.2019.110
  6. Del-Ben Cristina Marta, 2001, Revista Brasileira de Psiquiatria, V23, P156, DOI 10.1590/S1516-44462001000300008
  7. Di Forti M, 2019, LANCET PSYCHIAT, V6, P427, DOI 10.1016/S2215-0366(19)30048-3
  8. Di Forti M, 2009, BRIT J PSYCHIAT, V195, P488, DOI 10.1192/bjp.bp.109.064220
  9. Ferretjans R, 2022, BRAZ J PSYCHIAT, V44, P26, DOI 10.1590/1516-4446-2020-1650
  10. First M., 1997, STRUCTURED CLIN INTE
  11. Garani R, 2021, PROG NEURO-PSYCHOPH, V106, DOI 10.1016/j.pnpbp.2020.110096
  12. Gayer-Anderson C, 2020, SOC PSYCH PSYCH EPID, V55, P645, DOI 10.1007/s00127-020-01831-x
  13. Gilbert-Diamond Diane, 2011, Curr Protoc Hum Genet, VChapter 1, DOI 10.1002/0471142905.hg0114s70
  14. González-Mariscal I, 2016, SCI REP-UK, V6, DOI 10.1038/srep33302
  15. Gouvêa ES, 2017, REV BRAS PSIQUIATR, V39, P160, DOI 10.1590/1516-4446-2016-1969
  16. Grassi-Oliveira R, 2006, REV SAUDE PUBL, V40, P249, DOI 10.1590/S0034-89102006000200010
  17. Guloksuz S, 2019, WORLD PSYCHIATRY, V18, P173, DOI 10.1002/wps.20629
  18. Guo ZM, 2016, NEUROSCI LETT, V630, P132, DOI 10.1016/j.neulet.2016.07.038
  19. Hahn LW, 2003, BIOINFORMATICS, V19, P376, DOI 10.1093/bioinformatics/btf869
  20. He M, 2019, INT J CLIN EXP PATHO, V12, P628
  21. Heinemeyer T, 1998, NUCLEIC ACIDS RES, V26, P362, DOI 10.1093/nar/26.1.362
  22. Ho BC, 2011, SCHIZOPHR RES, V128, P66, DOI 10.1016/j.schres.2011.02.021
  23. Huo YX, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08666-4
  24. Jongsma HE, 2018, JAMA PSYCHIAT, V75, P36, DOI 10.1001/jamapsychiatry.2017.3554
  25. Kuzman MR, 2019, EUR PSYCHIAT, V61, P88, DOI 10.1016/j.eurpsy.2019.07.004
  26. Laksmidewi AAAP, 2021, J NEURAL TRANSM, V128, P615, DOI 10.1007/s00702-021-02326-y
  27. Lee G, 2019, FRONT MOL NEUROSCI, V12, DOI 10.3389/fnmol.2019.00185
  28. Liang X, 2019, AGING-US, V11, P3704, DOI 10.18632/aging.102008
  29. Liu YP, 2019, BMC MED GENET, V20, DOI 10.1186/s12881-019-0757-3
  30. Loureiro CM, 2018, SCHIZOPHR RES, V202, P55, DOI 10.1016/j.schres.2018.06.037
  31. Mackie K, 2005, HANDB EXP PHARMACOL, V168, P299
  32. Martel JC, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.01003
  33. McCutcheon RA, 2020, WORLD PSYCHIATRY, V19, P15, DOI 10.1002/wps.20693
  34. McCutcheon RA, 2020, JAMA PSYCHIAT, V77, P201, DOI 10.1001/jamapsychiatry.2019.3360
  35. Ménard C, 2002, NEURON, V36, P597, DOI 10.1016/S0896-6273(02)01026-7
  36. Moore JH, 2015, METHODS MOL BIOL, V1253, P301, DOI 10.1007/978-1-4939-2155-3_16
  37. Niu HM, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0398-5
  38. Nkam I, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170147
  39. Oh S, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-S9-S5
  40. Olney JW, 1999, J PSYCHIAT RES, V33, P523, DOI 10.1016/S0022-3956(99)00029-1
  41. Onaivi ES, 2009, INT REV NEUROBIOL, V88, P335, DOI 10.1016/S0074-7742(09)88012-4
  42. OVERALL JE, 1962, PSYCHOL REP, V10, P799
  43. Paoletti P, 2013, NAT REV NEUROSCI, V14, P383, DOI 10.1038/nrn3504
  44. Pasman JA, 2018, NAT NEUROSCI, V21, P1161, DOI 10.1038/s41593-018-0206-1
  45. Popovic D, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00274
  46. Prats C, 2017, EUR PSYCHIAT, V40, P60, DOI 10.1016/j.eurpsy.2016.07.006
  47. Pulido-Salgado M, 2015, PROG NEUROBIOL, V132, P1, DOI 10.1016/j.pneurobio.2015.06.003
  48. Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795
  49. Ripke S, 2014, NATURE, V511, P421, DOI 10.1038/nature13595
  50. Ritchie MD, 2003, GENET EPIDEMIOL, V24, P150, DOI 10.1002/gepi.10218
  51. Rodríguez-Muñoz M, 2016, ONCOTARGET, V7, P55840, DOI 10.18632/oncotarget.10095
  52. RStudio Team, RSTUDIO INT DEV R
  53. SAKIMURA K, 1995, NATURE, V373, P151, DOI 10.1038/373151a0
  54. Sánchez-Blázquez P, 2014, FRONT PHARMACOL, V4, DOI 10.3389/fphar.2013.00169
  55. Seifert J, 2007, NEUROSCI LETT, V426, P29, DOI 10.1016/j.neulet.2007.08.008
  56. Singh SP, 2005, SCHIZOPHR RES, V80, P117, DOI 10.1016/j.schres.2005.04.018
  57. Singh T, 2022, NATURE, V604, P509, DOI 10.1038/s41586-022-04556-w
  58. Stilo SA, 2019, CURR PSYCHIAT REP, V21, DOI 10.1007/s11920-019-1091-3
  59. Stringer S, 2016, TRANSL PSYCHIAT, V6, DOI 10.1038/tp.2016.36
  60. Trubetskoy V, 2022, NATURE, V604, P502, DOI 10.1038/s41586-022-04434-5
  61. Tsai SJ, 2000, PSYCHIATR GENET, V10, P149, DOI 10.1097/00041444-200010030-00008
  62. Wahbeh MH, 2021, GENES-BASEL, V12, DOI 10.3390/genes12121850
  63. Yang YF, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125925
  64. Zhang JP, 2011, EXPERT OPIN DRUG MET, V7, P9, DOI 10.1517/17425255.2011.532787
  65. Zhang KR, 2009, J AFFECT DISORDERS, V114, P224, DOI 10.1016/j.jad.2008.07.012
  66. Zhang YX, 2015, SCI REP-UK, V5, DOI 10.1038/srep12984