Whole-genome sequencing uncovers two loci for coronary artery calcification and identifies ARSE as a regulator of vascular calcification

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGERNATURE
Autores
VRIES, Paul S. de
CONOMOS, Matthew P.
SINGH, Kuldeep
NICHOLSON, Christopher J.
JAIN, Deepti
HASBANI, Natalie R.
JIANG, Wanlin
LEE, Sujin
CARDENAS, Christian L. Lino
LUTZ, Sharon M.
Citação
NATURE CARDIOVASCULAR RESEARCH, v.2, n.12, p.1159-+, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Coronary artery calcification (CAC) is a measure of atherosclerosis and a well-established predictor of coronary artery disease (CAD) events. Here we describe a genome-wide association study of CAC in 22,400 participants from multiple ancestral groups. We confirmed associations with four known loci and identified two additional loci associated with CAC (ARSE and MMP16), with evidence of significant associations in replication analyses for both novel loci. Functional assays of ARSE and MMP16 in human vascular smooth muscle cells (VSMCs) demonstrate that ARSE is a promoter of VSMC calcification and VSMC phenotype switching from a contractile to a calcifying or osteogenic phenotype. Furthermore, we show that the association of variants near ARSE with reduced CAC is likely explained by reduced ARSE expression with the G allele of enhancer variant rs5982944. Our study highlights ARSE as an important contributor to atherosclerotic vascular calcification and a potential drug target for vascular calcific disease. de Vries, Conomos, Singh and Nicholson et al. identify two additional loci associated with coronary artery calcification (ARSE and MMP16) via a genome-wide association study in 22,400 participants from multiple ancestral groups and prove that ARSE is a mediator of vascular smooth muscle cell calcification and phenotype switching.
Palavras-chave
Referências
  1. AGATSTON AS, 1990, J AM COLL CARDIOL, V15, P827, DOI 10.1016/0735-1097(90)90282-T
  2. Aherrahrou R, 2017, BIOCHEM BIOPH RES CO, V491, P396, DOI 10.1016/j.bbrc.2017.07.090
  3. Altshuler DM, 2015, NATURE, V526, P68, DOI 10.1038/nature15393
  4. Aragam KG, 2022, NAT GENET, V54, DOI 10.1038/s41588-022-01233-6
  5. Bailey M, 2004, CARDIOVASC PATHOL, V13, P146, DOI 10.1016/S1054-8807(04)00009-2
  6. Bielak LF, 2018, CURR GENET MED REP, V6, P116, DOI 10.1007/s40142-018-0145-x
  7. Bild DE, 2005, CIRCULATION, V111, P1313, DOI 10.1161/01.CIR.0000157730.94423.4B
  8. Bing HT, 2006, J CELL BIOCHEM, V99, P1343, DOI 10.1002/jcb.20999
  9. Brunetti-Pierri N, 2003, AM J MED GENET A, V117A, P164, DOI 10.1002/ajmg.a.10950
  10. Budoff MJ, 2018, EUR HEART J, V39, P2401, DOI 10.1093/eurheartj/ehy217
  11. Budoff MJ, 2011, J CARDIOVASC COMPUT, V5, P113, DOI 10.1016/j.jcct.2010.11.002
  12. Carr JJ, 2005, RADIOLOGY, V234, P35, DOI 10.1148/radiol.2341040439
  13. Chen H, 2019, AM J HUM GENET, V104, P260, DOI 10.1016/j.ajhg.2018.12.012
  14. Chen H, 2016, AM J HUM GENET, V98, P653, DOI 10.1016/j.ajhg.2016.02.012
  15. CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
  16. Conomos MP, 2016, AM J HUM GENET, V98, P127, DOI 10.1016/j.ajhg.2015.11.022
  17. Conomos MP, 2016, AM J HUM GENET, V98, P165, DOI 10.1016/j.ajhg.2015.12.001
  18. Conomos MP, 2015, GENET EPIDEMIOL, V39, P276, DOI 10.1002/gepi.21896
  19. Dey R, 2017, AM J HUM GENET, V101, P37, DOI 10.1016/j.ajhg.2017.05.014
  20. Dong CL, 2015, HUM MOL GENET, V24, P2125, DOI 10.1093/hmg/ddu733
  21. Durham AL, 2018, CARDIOVASC RES, V114, P590, DOI 10.1093/cvr/cvy010
  22. Fang HY, 2019, AM J HUM GENET, V105, P763, DOI 10.1016/j.ajhg.2019.08.012
  23. Fishilevich S, 2017, DATABASE-OXFORD, DOI 10.1093/database/bax028
  24. Frankish A, 2019, NUCLEIC ACIDS RES, V47, pD766, DOI 10.1093/nar/gky955
  25. Giambartolomei C, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004383
  26. Gogarten SM, 2019, BIOINFORMATICS, V35, P5346, DOI 10.1093/bioinformatics/btz567
  27. Greenland P, 2018, J AM COLL CARDIOL, V72, P434, DOI 10.1016/j.jacc.2018.05.027
  28. Gupta RM, 2017, CELL, V170, P522, DOI 10.1016/j.cell.2017.06.049
  29. Hecht E, 2016, NEPHROL DIAL TRANSPL, V31, P789, DOI 10.1093/ndt/gfv321
  30. Howson JMM, 2017, NAT GENET, V49, P1113, DOI 10.1038/ng.3874
  31. INNERARITY TL, 1987, P NATL ACAD SCI USA, V84, P6919, DOI 10.1073/pnas.84.19.6919
  32. Itoh Y, 2015, MATRIX BIOL, V44-46, P207, DOI 10.1016/j.matbio.2015.03.004
  33. Jiang LQ, 2012, HYPERTENSION, V60, P1192, DOI 10.1161/HYPERTENSIONAHA.112.196840
  34. Kang H, 2012, J BIOL CHEM, V287, P3976, DOI 10.1074/jbc.M111.303156
  35. Kavousi M, 2012, ANN INTERN MED, V156, P438, DOI 10.7326/0003-4819-156-6-201203200-00006
  36. Kelly TN, 2022, HYPERTENSION, V79, P1656, DOI 10.1161/HYPERTENSIONAHA.122.19324
  37. Klarin D, 2017, NAT GENET, V49, P1392, DOI 10.1038/ng.3914
  38. Koyama S, 2020, NAT GENET, V52, P1169, DOI 10.1038/s41588-020-0705-3
  39. Kuzuya M, 2006, ARTERIOSCL THROM VAS, V26, P1120, DOI 10.1161/01.ATV.0000218496.60097.e0
  40. Lee S, 2012, AM J HUM GENET, V91, P224, DOI 10.1016/j.ajhg.2012.06.007
  41. Leopold JA, 2015, TRENDS CARDIOVAS MED, V25, P267, DOI 10.1016/j.tcm.2014.10.021
  42. Lin ME, 2015, AM J PATHOL, V185, P1958, DOI 10.1016/j.ajpath.2015.03.020
  43. Liu XM, 2016, J MED GENET, V53, P111, DOI 10.1136/jmedgenet-2015-103423
  44. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  45. Lo Sardo V, 2018, CELL, V175, P1796, DOI 10.1016/j.cell.2018.11.014
  46. MAHLEY RW, 1988, SCIENCE, V240, P622, DOI 10.1126/science.3283935
  47. Malhotra R, 2019, NAT GENET, V51, P1580, DOI 10.1038/s41588-019-0514-8
  48. Maller JB, 2012, NAT GENET, V44, P1294, DOI 10.1038/ng.2435
  49. Matsunaga H, 2020, CIRC-GENOM PRECIS ME, V13, P128, DOI 10.1161/CIRCGEN.119.002670
  50. McLaren W, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-0974-4
  51. Mumbach MR, 2017, NAT GENET, V49, P1602, DOI 10.1038/ng.3963
  52. Natarajan P, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-22339-1
  53. Natarajan P, 2016, CIRC-CARDIOVASC GENE, V9, P511, DOI 10.1161/CIRCGENETICS.116.001572
  54. Nicholson CJ, 2018, J AM HEART ASSOC, V7, DOI 10.1161/JAHA.118.008926
  55. Nikpay M, 2015, NAT GENET, V47, P1121, DOI 10.1038/ng.3396
  56. O'Donnell CJ, 2011, CIRCULATION, V124, P2855, DOI 10.1161/CIRCULATIONAHA.110.974899
  57. ORourke C., 2016, J. Vis. Exp., V54017
  58. Pereira AC, 2016, CLIN CARDIOL, V39, P352, DOI 10.1002/clc.22539
  59. Polonsky TS, 2010, JAMA-J AM MED ASSOC, V303, P1610, DOI 10.1001/jama.2010.461
  60. Rogers MF, 2018, BIOINFORMATICS, V34, P511, DOI 10.1093/bioinformatics/btx536
  61. Rohwedder I, 2012, EMBO MOL MED, V4, P564, DOI 10.1002/emmm.201200237
  62. Selvaraj MS, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-33510-7
  63. Shi X, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00056
  64. Sofer T, 2019, GENET EPIDEMIOL, V43, P263, DOI 10.1002/gepi.22188
  65. Stilp AM, 2021, AM J EPIDEMIOL, V190, P1977, DOI 10.1093/aje/kwab115
  66. Sun Y, 2012, CIRC RES, V111, P543, DOI 10.1161/CIRCRESAHA.112.267237
  67. Sutton NR, 2023, ARTERIOSCL THROM VAS, V43, P15, DOI 10.1161/ATVBAHA.122.317332
  68. Taliun D, 2021, NATURE, V590, DOI 10.1038/s41586-021-03205-y
  69. Turner AW, 2022, NAT GENET, V54, P804, DOI 10.1038/s41588-022-01069-0
  70. Uzui H, 2002, CIRCULATION, V106, P3024, DOI 10.1161/01.CIR.0000041433.94868.12
  71. Verweij N, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03062-8
  72. Wågsäter D, 2011, INT J MOL MED, V28, P247, DOI 10.3892/ijmm.2011.693
  73. Watson KE, 1998, ARTERIOSCL THROM VAS, V18, P1964, DOI 10.1161/01.ATV.18.12.1964
  74. Wessel J., 2020, PREPRINT, DOI [10.1101/2020.11.13.20221812, DOI 10.1101/2020.11.13.20221812]
  75. Wojczynski MK, 2013, BMC MED GENET, V14, DOI 10.1186/1471-2350-14-75
  76. Wu MC, 2011, AM J HUM GENET, V89, P82, DOI 10.1016/j.ajhg.2011.05.029
  77. Zerbino DR, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0621-5
  78. Zhao QY, 2020, GENOME BIOL, V21, DOI 10.1186/s13059-020-02049-5
  79. Zhou W, 2018, NAT GENET, V50, P1335, DOI 10.1038/s41588-018-0184-y