Betapapillomavirus natural history and co-detection with alphapapillomavirus in cervical samples of adult women

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
MALAGON, Talia
NUNES, Emily Montosa
GHEIT, Tarik
EL-ZEIN, Mariam
FRANCO, Eduardo L.
Citação
JOURNAL OF MEDICAL VIROLOGY, v.95, n.12, article ID e29288, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human papillomaviruses (HPV) of the genus Betapapillomavirus can infect both cutaneous and mucosal sites, but research on their natural history at mucosal sites remains scarce. We examined the risk factors and co-detection patterns of HPVs of the Betapapillomavirus and Alphapapillomavirus genera in cervical samples of the Ludwig-McGill cohort study. We assessed a subset of 505 women from the Ludwig-McGill cohort study from Sao Paulo, Brazil. Cervical samples over the first year of follow-up were tested for DNA of over 40 alphapapillomavirus types and 43 betapapillomavirus types using a type-specific multiplex genotyping polymerase chain reaction assay. We assessed the risk factors for prevalent and incident betapapillomavirus type detection, and whether types were detected more frequently together than expected assuming independence using permutation tests, logistic regression, and Cox regression. We observed significant within-genus clustering but not cross-genus clustering. Multiple betapapillomavirus types were co-detected in the same sample 2.24 (95% confidence interval [CI]: 1.65-3.29) times more frequently than expected. Conversely, co-detections of alphapapillomavirus and betapapillomavirus types in the same sample occurred only 0.64 (95% CI: 0.51-0.83) times as often as expected under independence. In prospective analyses, positivity to one HPV genus was associated with a nonsignificant lower incidence of detection of types in the other genus. Lifetime number of sex partners and new sex partner acquisition were associated with lower risks of prevalent and incident betapapillomavirus detection. Betapapillomaviruses are commonly found in the cervicovaginal tract. Results suggest potentially different mechanisms of transmission for betapapillomavirus genital infections other than vaginal sex.
Palavras-chave
epidemiology, human papillomavirus, research and analysis methods, sexually transmitted disease
Referências
  1. Agalliu I, 2016, JAMA ONCOL, V2, P599, DOI 10.1001/jamaoncol.2015.5504
  2. Altamura G, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.588663
  3. Berry KJ, 2011, WIRES COMPUT STAT, V3, P527, DOI 10.1002/wics.177
  4. Bottalico D, 2011, J INFECT DIS, V204, P787, DOI 10.1093/infdis/jir383
  5. Burchell AN, 2006, VACCINE, V24, P52, DOI 10.1016/j.vaccine.2006.05.031
  6. Carozzi F, 2012, EUR J CANCER, V48, P1633, DOI 10.1016/j.ejca.2011.10.010
  7. Chaturvedi AK, 2011, J INFECT DIS, V203, P910, DOI 10.1093/infdis/jiq139
  8. Egawa N, 2015, VIRUSES-BASEL, V7, P3863, DOI 10.3390/v7072802
  9. Franco E, 1999, Rev Panam Salud Publica, V6, P223, DOI 10.1590/S1020-49891999000900001
  10. Gheit T, 2007, J CLIN MICROBIOL, V45, P2537, DOI 10.1128/JCM.00747-07
  11. Gheit T, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.00355
  12. Gravitt PE, 2000, J CLIN MICROBIOL, V38, P357
  13. Hampras SS, 2017, J INFECT DIS, V216, P92, DOI 10.1093/infdis/jix245
  14. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2012, IARC Monogr Eval Carcinog Risks Hum, V100, P9
  15. Kuhs KAL, 2013, J INFECT DIS, V208, P1643, DOI 10.1093/infdis/jit369
  16. LIN DY, 1989, J AM STAT ASSOC, V84, P1074, DOI 10.2307/2290085
  17. Méndez F, 2005, J INFECT DIS, V192, P1158, DOI 10.1086/444391
  18. Moscicki AB, 2017, OPEN FORUM INFECT DI, V4, DOI 10.1093/ofid/ofw216
  19. Nunes EM, 2016, VIROLOGY, V495, P33, DOI 10.1016/j.virol.2016.04.031
  20. ORTH G, 1978, P NATL ACAD SCI USA, V75, P1537, DOI 10.1073/pnas.75.3.1537
  21. Plasmeijer EI, 2010, J CLIN VIROL, V47, P216, DOI 10.1016/j.jcv.2009.12.004
  22. Rousseau MC, 2001, J INFECT DIS, V184, P1508, DOI 10.1086/324579
  23. Sabol I, 2016, J CLIN VIROL, V82, P159, DOI 10.1016/j.jcv.2016.07.019
  24. Scherpenisse M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074797
  25. Sichero L, 2017, CANCER EPIDEM BIOMAR, V26, P1312, DOI 10.1158/1055-9965.EPI-17-0081
  26. Smelov V, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26589-w
  27. SOLER C, 1993, J INVEST DERMATOL, V101, P286, DOI 10.1111/1523-1747.ep12365211
  28. Tommasino M, 2017, VIRUS RES, V231, P128, DOI 10.1016/j.virusres.2016.11.013
  29. Tota JE, 2017, JNCI-J NATL CANCER I, V109, DOI 10.1093/jnci/djw300
  30. Tota JE, 2013, AM J EPIDEMIOL, V178, P625, DOI 10.1093/aje/kwt018
  31. Winer RL, 2019, J INFECT DIS, V219, P1067, DOI 10.1093/infdis/jiy632