QUANTIFYING THE RISK OF MOSQUITO-BORNE INFECTIONS BASING ON THE EQUILIBRIUM PREVALENCE IN HUMANS

Nenhuma Miniatura disponível
Citações na Scopus
Tipo de produção
conferenceObject
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
WORLD SCIENTIFIC PUBL CO PTE LTD
Citação
BIOMAT 2012: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, p.44-55, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This paper proposes a general model for vector-borne infections that is flexible enough to comprise the dynamics of some known diseases transmitted by arthropods. From equilibrium analysis, we determined the number of infected vectors as an explicit function of the model's parameters and the prevalence of infection in the hosts. From the analysis, it is also possible to derive the Basic Reproduction Number and the equilibrium force of infection as a function of those parameters and variables. From the force of infection, we were able to conclude that, depending on the disease's structure and the model's parameters, it is possible to estimate a risk quantifier for those diseases. The analysis is exemplified by the case of malaria.
Palavras-chave
Referências
  1. Adams B, 2010, EPIDEMICS-NETH, V2, P1, DOI 10.1016/j.epidem.2010.01.001
  2. Amaku M., COMP ANAL RELA UNPUB
  3. Anderson R. M., 1991, INFECT DIS HUMANS DY
  4. Burattini M. N., 2008, EPIDEMIOL INFECT, V136
  5. CDC (Centers for Diseases Control), 2005, INF ARB ENC
  6. CIESIN (Center for International Earth Science Information Network), 2012, CHANG INC VECT BORN
  7. Coutinho FAB, 2005, MATH COMPUT SIMULAT, V70, P149, DOI 10.1016/j.matcom.2005.06.003
  8. Coutinho FAB, 2006, B MATH BIOL, V68, P2263, DOI 10.1007/s11538-006-9108-6
  9. FORATTINI OP, 1993, REV SAUDE PUBL, V27, P227, DOI 10.1590/S0034-89101993000400001
  10. Gray SM, 1999, MICROBIOL MOL BIOL R, V63, P128
  11. Gubler D. J., 2005, INTEGRATION PUBLIC H, P44
  12. Gubler DJ, 2004, COMP IMMUNOL MICROB, V27, P319, DOI 10.1016/j.cimid.2004.03.013
  13. Gubler DJ, 1998, EMERG INFECT DIS, V4, P442
  14. Gubler DJ, 2002, ARCH MED RES, V33, P330, DOI 10.1016/S0188-4409(02)00378-8
  15. GUBLER DJ, 1989, AM J TROP MED HYG, V40, P571
  16. Hay SI, 2009, PLOS MED, V6
  17. IOM (Institute of Medicine), 1992, EM INF MICR THREATS
  18. Karunamoorthi K., 2012, J SOCIALOMICS, V1, P2
  19. Lemon S.M., 2008, VECTOR BORNE DIS UND
  20. Lopez LF, 2002, CR BIOL, V325, P1073, DOI 10.1016/S1631-0691(02)01534-2
  21. MacDonald G., 1952, TROP DIS B, V49
  22. Massad E, 2011, PHYS LIFE REV, V8, P169, DOI 10.1016/j.plrev.2011.01.001
  23. Massad E, 2012, MEM I OSWALDO CRUZ, V107, P564, DOI 10.1590/S0074-02762012000400022
  24. MASSAD E, 1994, MATH BIOSCI, V123, P227, DOI 10.1016/0025-5564(94)90013-2
  25. Massad E, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-296
  26. Massad E, 2005, VACCINE, V23, P3908, DOI 10.1016/j.vaccine.2005.03.002
  27. Murray CJL, 2012, LANCET, V379, P413, DOI 10.1016/S0140-6736(12)60034-8
  28. Smith DL, 2005, NATURE, V438, P492, DOI 10.1038/nature04024
  29. WHO, 2004, GLOB STRAT FRAM INT
  30. WHO (World Health Organization), 2005, STAT ART VACC RES DE
  31. Wilder-Smith A, 2012, GLOBAL HEALTH ACTION, V5, P1, DOI 10.3402/gha.v5i0.17273
  32. Woolhouse MEJ, 1997, P NATL ACAD SCI USA, V94, P338, DOI 10.1073/pnas.94.1.338