Ambient levels of concentrated PM2.5 affects cell kinetics in adrenal glands: an experimental study in mice

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
Citação
GYNECOLOGICAL ENDOCRINOLOGY, v.33, n.6, p.490-495, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We evaluated the effects of air pollution on the adrenal cortex using 30 female mice divided into two groups of fifteen animals each. One group was conditioned daily in a chamber with exposure to particulate matter (PM) 2.5 mu m (GExp). Animals were exposed on daily basis in an ambient particles concentrator during the period of time enough to reach an accumulated dose of 600 mu g/m(3), which corresponds to a 24-h exposure of 25 mu g/m(3) that approximates to the annual mean of PM2.5 in Sao Paulo. The other group was allocated to another chamber with filtered air (GCrt). After euthanasia, the adrenals underwent histological processing and immunohistochemistry staining for Ki-67 and cleaved caspase-3. Histomorphometry of the adrenal glands in GExp showed increased thickness of the zona glomerulosa, while in GCrt; the adrenal glands from GExp had higher Ki-67 immunostaining scores in the zona reticularis than those from GCrt. The adrenal from GExp showed higher cleaved caspase-3 immunoreactivity in the zona fasciculata than the unexposed group (GCrt). The homeostasis index indicated higher cell proliferation in the zona glomerulosa and zona reticularis in GExp than in GCrt. Our data indicate that PM2.5 air pollution induces alterations on cell kinetics in mouse adrenal glands.
Palavras-chave
Adrenal, mouse, PM2.5, traffic, urban pollution
Referências
  1. Brucker N, 2014, ENVIRON RES, V131, P31, DOI 10.1016/j.envres.2014.02.012
  2. Costa M, 2003, J ENVIRON MONITOR, V5, P222, DOI 10.1039/b210260a
  3. Dejmek J, 2000, Cas Lek Cesk, V139, P177
  4. Glinianaia SV, 2004, ENVIRON HEALTH PERSP, V112, P1365, DOI 10.1289/ehp.6857
  5. GOERING PL, 1993, NEUROTOXICOLOGY, V14, P45
  6. Kampa M, 2008, ENVIRON POLLUT, V151, P362, DOI 10.1016/j.envpol.2007.06.012
  7. Kodavanti UP, 2016, BBA-GEN SUBJECTS, V1860, P2880, DOI 10.1016/j.bbagen.2016.05.010
  8. Macedo LA, 2015, GYNECOL ENDOCRINOL, V31, P609, DOI 10.3109/09513590.2015.1019342
  9. Cubas JJM, 2010, CLINICS, V65, P703, DOI 10.1590/S1807-59322010000700009
  10. Mitani F, 2014, P JPN ACAD B-PHYS, V90, P163, DOI 10.2183/pjab.90.163
  11. Mohallem SV, 2005, ENVIRON RES, V98, P196, DOI 10.1016/j.envres.2004.08.007
  12. O'Connor TM, 2000, QJM-INT J MED, V93, P323, DOI 10.1093/qjmed/93.6.323
  13. Panzan MQ, 2013, EUR J OBSTET GYN R B, V167, P47, DOI 10.1016/j.ejogrb.2012.10.021
  14. Riva DR, 2011, INHAL TOXICOL, V23, P257, DOI 10.3109/08958378.2011.566290
  15. ROSSI E, 1993, BIOMED CHROMATOGR, V7, P1, DOI 10.1002/bmc.1130070102
  16. Salnikow K, 1997, CANCER RES, V57, P5060
  17. Selevan SG, 2000, ENVIRON HEALTH PERSP, V108, P887, DOI 10.2307/3434998
  18. SIOUTAS C, 1995, ENVIRON HEALTH PERSP, V103, P172, DOI 10.2307/3432274
  19. Somers CM, 2011, SYST BIOL REPROD MEC, V57, P63, DOI 10.3109/19396368.2010.500440
  20. Sram RJ, 2005, ENVIRON HEALTH PERSP, V113, P375, DOI 10.1289/ehp.6362
  21. Thomson EM, 2013, TOXICOL SCI, V135, P169, DOI 10.1093/toxsci/kft137
  22. Valko M, 2005, CURR MED CHEM, V12, P1161, DOI 10.2174/0929867053764635
  23. Veras MM, 2009, ENVIRON RES, V109, P536, DOI 10.1016/j.envres.2009.03.006