The Brain as a Distributed Intelligent Processing System: An EEG Study

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2011
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
ROCHA, Armando Freitas da
ROCHA, Fabio Theoto
Citação
PLOS ONE, v.6, n.3, article ID e17355, 13p, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.
Palavras-chave
Referências
  1. Jausovec N, 2000, INTELLIGENCE, V28, P213, DOI 10.1016/S0160-2896(00)00037-4
  2. Jackson DN, 2006, INTELLIGENCE, V34, P479, DOI 10.1016/j.intell.2006.03.005
  3. Barabasi AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
  4. Haier RJ, 2004, NEUROIMAGE, V23, P425, DOI 10.1016/j.neuroimage.2004.04.025
  5. Rocha FT, 2005, COGNITIVE BRAIN RES, V22, P359, DOI 10.1016/j.cogbrainres.2004.09.008
  6. Njemanze PC, 2005, BRAIN LANG, V92, P234, DOI 10.1016/j.bandl.2004.06.104
  7. Iturria-Medina Y, 2008, NEUROIMAGE, V40, P1064, DOI 10.1016/j.neuroimage.2007.10.060
  8. Rammsayer TH, 2007, INTELLIGENCE, V35, P123, DOI 10.1016/j.intell.2006.04.007
  9. Fair DA, 2008, P NATL ACAD SCI USA, V105, P4028, DOI 10.1073/pnas.0800376105
  10. Schmid RG, 2002, CLIN NEUROPHYSIOL, V113, P1647, DOI 10.1016/S1388-2457(02)00212-2
  11. Rocha AF, 1997, PROG NEUROBIOL, V53, P121, DOI 10.1016/S0301-0082(97)00015-4
  12. Lynn R, 1999, INTELLIGENCE, V27, P1, DOI 10.1016/S0160-2896(99)00009-4
  13. Dosenbach NUF, 2007, P NATL ACAD SCI USA, V104, P11073, DOI 10.1073/pnas.0704320104
  14. Song M, 2008, NEUROIMAGE, V41, P1168, DOI 10.1016/j.neuroimage.2008.02.036
  15. Jung RE, 2007, BEHAV BRAIN SCI, V30, P135, DOI 10.1017/S0140525X07001185
  16. LESSER VR, 1991, IEEE T SYST MAN CYB, V21, P1347, DOI 10.1109/21.135681
  17. HEWITT C, 1991, IEEE T SYST MAN CYB, V21, P1409, DOI 10.1109/21.135685
  18. van den Heuvel MP, 2008, NEUROIMAGE, V43, P528, DOI 10.1016/j.neuroimage.2008.08.010
  19. HAIER RJ, 1988, INTELLIGENCE, V12, P199, DOI 10.1016/0160-2896(88)90016-5
  20. Reijneveld JC, 2007, CLIN NEUROPHYSIOL, V118, P2317, DOI 10.1016/j.clinph.2007.08.010
  21. Fair DA, 2007, P NATL ACAD SCI USA, V104, P13507, DOI 10.1073/pnas.0705843104
  22. Micheloyannis S, 2006, NEUROSCI LETT, V402, P273, DOI 10.1016/j.neulet.2006.04.006
  23. Lee KH, 2006, NEUROIMAGE, V29, P578, DOI 10.1016/j.neuroimage.2005.07.036
  24. Colom R, 2004, PERS INDIV DIFFER, V36, P75, DOI 10.1016/S0191-8869(03)00053-9
  25. Tononi G, 1998, SCIENCE, V282, P1846, DOI 10.1126/science.282.5395.1846
  26. Dosenbach NUF, 2006, NEURON, V50, P799, DOI 10.1016/j.neuron.2006.04.031
  27. Deary IJ, 1997, TRENDS NEUROSCI, V20, P365, DOI 10.1016/S0166-2236(97)01070-9
  28. CHANDRASEKARAN B, 1981, IEEE T SYS MAN CYBER, V11, P11
  29. DAVIS R, 1983, ARTIF INTELL, V20, P63, DOI 10.1016/0004-3702(83)90015-2
  30. Doppelmayr M, 2002, INTELLIGENCE, V30, P289, DOI 10.1016/S0160-2896(01)00101-5
  31. Doppelmayr M, 2005, NEUROSCI LETT, V381, P309, DOI 10.1016/j.neulet.2005.02.037
  32. FINK F, 2006, INT J PSYCHOPHYSIOL, V62, P46
  33. Grabner RH, 2006, BRAIN RES BULL, V69, P422, DOI 10.1016/j.brainresbull.2006.02.009
  34. Greicius MD, 2003, P NATL ACAD SCI USA, V100, P253, DOI 10.1073/pnas.0135058100
  35. Jausovec N, 2005, BRAIN COGNITION, V59, P277, DOI 10.1016/j.bandc.2005.08.001
  36. Neubauer AC, 2002, INTELLIGENCE, V30, P515, DOI 10.1016/S0160-2896(02)00091-0
  37. Neubauer AC, 1997, PERS INDIV DIFFER, V22, P885, DOI 10.1016/S0191-8869(97)00003-2
  38. Rocha A, 2001, PROGR NEUROBIOLOGY, V64, P555
  39. Rocha A. F., 1992, LECT NOTES ARTIFICIA
  40. ROCHA AF, 2004, BRAIN
  41. Stauder JEA, 2003, INTELLIGENCE, V31, P257, DOI 10.1016/S0160-2896(02)00136-8
  42. WATS DJ, 1999, SMALL WORLDS DYNAMIC