Characteristics of aquaporin 1, 3, and 5 expression during early murine salivary gland development

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
PAULA, Fernanda de
TUCKER, Abigail S.
TESHIMA, Tathyane Harumi N.
SOUZA, Milena Monteiro de
COUTINHO-CAMILLO, Claudia Malheiros
Citação
JOURNAL OF ANATOMY, v.238, n.3, p.794-806, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aquaporins (AQPs) are essential to coordinate the transit of water and ions through the cell membrane. In salivary glands (SGs), AQPs have been associated with saliva formation, facilitating water absorption through the epithelium during the formation of hypotonic saliva, which is then secreted into the oral cavity. Different members of the AQP family have been suggested to play distinct roles during embryonic development, highlighted by their specific expression patterns. Here, we have investigated the expression patterns of AQP-1, AQP-3 and AQP-5 by immunofluorescence at key stages of salivary gland development, utilising cultured mouse embryonic submandibular (SMG) and sublingual (SLG) glands. The expression of AQPs was compared to a mitotic marker, phospho-histone 3 (PH3), a myoepithelial marker, smooth muscle actin (SMA), and a vascular marker, CD31. Qualitative analysis revealed that AQP-1 and AQP-3 were primarily expressed during the earlier phases of SG morphogenesis and were associated with cells undergoing mitotic processes (PH3-positive). AQP-5, in contrast, was not associated to mitotic figures, but was predominantly expressed during late stages of SG morphogenesis. Our results highlight that AQPs are expressed from early stages of SG morphogenesis and exhibit complimentary expression patterns that may contribute to the morphogenesis of salivary glands.
Palavras-chave
aquaporin, development, expression, mitosis, salivary gland
Referências
  1. Agre Peter, 2006, Proc Am Thorac Soc, V3, P5, DOI 10.1513/pats.200510-109JH
  2. Akamatsu T, 2003, PFLUG ARCH EUR J PHY, V446, P641, DOI 10.1007/s00424-003-1109-9
  3. Aure MH, 2014, J MOL HISTOL, V45, P69, DOI 10.1007/s10735-013-9526-3
  4. Aure MH, 2011, J MOL HISTOL, V42, P401, DOI 10.1007/s10735-011-9343-5
  5. Breslin JW, 2019, COMPR PHYSIOL, V9, P207, DOI 10.1002/cphy.c180015
  6. Calamita G, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00851
  7. Chauvigne F, 2019, COMMUN BIOL, V2, DOI 10.1038/s42003-019-0713-y
  8. de Paula F, 2017, J MOL HISTOL, V48, P329, DOI 10.1007/s10735-017-9731-6
  9. Delporte C, 1996, BIOCHEM BIOPH RES CO, V228, P223, DOI 10.1006/bbrc.1996.1645
  10. Delporte C, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17020166
  11. Delporte C, 2006, BBA-BIOMEMBRANES, V1758, P1061, DOI 10.1016/j.bbamem.2006.01.022
  12. Galan-Cobo A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137692
  13. Galan-Cobo A, 2016, J CELL PHYSIOL, V231, P243, DOI 10.1002/jcp.25078
  14. Gresz V, 2001, AM J PHYSIOL-GASTR L, V281, pG247
  15. Hara-Chikuma M, 2005, BIOL CELL, V97, P479
  16. Hara-Chikuma M, 2008, J MOL MED-JMM, V86, P221, DOI 10.1007/s00109-007-0272-4
  17. Hara-Chikuma M, 2006, J AM SOC NEPHROL, V17, P39, DOI 10.1681/ASN.2005080846
  18. Hosseini ZF, 2018, J CELL SCI, V131, DOI 10.1242/jcs.208728
  19. Hu J, 2006, FASEB J, V20, P1892, DOI 10.1096/fj.06-5930fje
  20. Hua Y, 2019, BIOSCIENCE REP, V39, DOI 10.1042/BSR20182303
  21. Ianez RF, 2010, HISTOPATHOLOGY, V57, P410, DOI 10.1111/j.1365-2559.2010.03645.x
  22. Ichiyama T, 2018, J ORAL SCI, V60, P212, DOI 10.2334/josnusd.17-0150
  23. Kida H, 2005, J MEMBRANE BIOL, V208, P55, DOI 10.1007/s00232-005-0819-7
  24. Krane CM, 2001, J BIOL CHEM, V276, P23413, DOI 10.1074/jbc.M008760200
  25. Larsen HS, 2011, J MOL HISTOL, V42, P71, DOI 10.1007/s10735-010-9308-0
  26. Larsen HS, 2009, EUR J ORAL SCI, V117, P655, DOI 10.1111/j.1600-0722.2009.00695.x
  27. Ma TH, 1999, J BIOL CHEM, V274, P20071, DOI 10.1074/jbc.274.29.20071
  28. Matsuki N, 2005, J MEMBRANE BIOL, V203, P119, DOI 10.1007/s00232-005-0736-9
  29. Matsuzaki T, 1999, CELL TISSUE RES, V295, P513, DOI 10.1007/s004410051257
  30. Matsuzaki T, 2012, ACTA HISTOCHEM CYTOC, V45, P251, DOI 10.1267/ahc.12018
  31. Nakamura Moriyoshi, 2013, Kurume Med J, V60, P7
  32. Qin YY, 2019, GENE EXPR PATTERNS, V32, P38, DOI 10.1016/j.gep.2019.04.001
  33. Saadoun S, 2005, NATURE, V434, P786, DOI 10.1038/nature03460
  34. Sapmaz E, 2016, ACTA OTO-LARYNGOL, V136, P937, DOI 10.3109/00016489.2016.1165353
  35. Teymoortash A, 2012, IN VIVO, V26, P951
  36. Tucker AS, 2007, SEMIN CELL DEV BIOL, V18, P237, DOI 10.1016/j.semcdb.2007.01.006
  37. Verkman AS, 2002, J ANAT, V200, P617, DOI 10.1046/j.1469-7580.2002.00058.x
  38. Wang D, 2009, J MED INVESTIG, V56, P350, DOI 10.2152/jmi.56.350
  39. Wang W, 2003, CALCIFIED TISSUE INT, V72, P222, DOI 10.1007/s00223-002-1014-9
  40. Wellner RB, 2006, PFLUG ARCH EUR J PHY, V451, P642, DOI 10.1007/s00424-005-1489-0
  41. Yang BX, 2005, AM J PHYSIOL-CELL PH, V288, pC1161, DOI 10.1152/ajpcell.00564.2004