Sex-Dependent Metabolic Alterations of Rat Liver After 12-Week Exposition to Haloperidol or Clozapine

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
GEORG THIEME VERLAG KG
Autores
WILMSDORFF, M. von
BOUVIER, M. -L.
HENNING, U.
SCHNEIDER-AXMANN, T.
GAEBEL, W.
Citação
HORMONE AND METABOLIC RESEARCH, v.46, n.11, p.782-788, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Antipsychotic drugs are known to have sex-dependent effects on metabolic homeostasis. Liver plays a crucial role in drug degradation as well as in glucose and lipid metabolism. The present study examines the influence of clozapine and haloperidol on metabolic liver parameters. Over 12 weeks, male and female Sprague-Dawley rats were fed ground pellets containing clozapine or haloperidol. Liver mass was weighed and liver index calculated. Liver transaminases (ALAT, ALP), malondialdehyde, glucose, triglycerides, total cholesterol, HDL-cholesterol, and glycogen were determined. Finally, SREBP-1 and SREBP-2 as well as neutral fat deposits were examined. In male rats fed with clozapine, we found increased liver mass correlated with an increased liver index, high triglyceride levels, a high ratio of SREBP-1, and an elevated neutral fat distribution. Male and female haloperidol treated rats showed decreased liver mass and increased neutral fat deposition. Malondialdehyde was increased in all rats receiving antipsychotic medication indicating elevated oxidative stress. In both male and female clozapine treated rats, we found glycogen depletion related to decreased glucose levels in females. While liver transaminases were unchanged in the clozapine group, ALAT was elevated after haloperidol treatment in both sexes. Chronic clozapine intake exerts sex-dependent effects on hepatic metabolism. Although haloperidol has been shown to change fewer metabolic parameters, it causes oxidative stress and neutral fat deposits in liver tissue in both sexes.
Palavras-chave
glucose, glycogen, lipid metabolism, oxidative stress
Referências
  1. Alimohamad H, 2005, BIOL PSYCHIAT, V57, P533, DOI 10.1016/j.biopsych.2004.11.036
  2. Amacher DE, 1998, FOOD CHEM TOXICOL, V36, P831, DOI 10.1016/S0278-6915(98)00066-0
  3. Bai YM, 2011, J CLIN PSYCHIAT, V72, P751, DOI 10.4088/JCP.09m05402yel
  4. Baig MR, 2010, J PSYCHIATR PRACT, V16, P325, DOI 10.1097/01.pra.0000388627.36781.6a
  5. Chen S, 2011, LONG TERM ETHANOL FE
  6. Dalla Libera A, 1998, FREE RADICAL RES, V29, P151
  7. De Hert M, 2011, NAT REV ENDOCRINOL, V8, P114, DOI 10.1038/NRENDO.2011.156
  8. Ferno J, 2006, BMC NEUROSCI, V7, DOI 10.1186/1471-2202-7-69
  9. Ferno J, 2009, PSYCHOPHARMACOLOGY, V203, P73, DOI 10.1007/s00213-008-1370-x
  10. Gaertner I, 2001, J CLIN PSYCHOPHARM, V21, P215, DOI 10.1097/00004714-200104000-00014
  11. Gama CS, 2006, PROG NEURO-PSYCHOPH, V30, P512, DOI 10.1016/j.pnpbp.2005.11.009
  12. Grover S, 2011, INDIAN J PHARMACOL, V43, P591, DOI 10.4103/0253-7613.84979
  13. Halici Z, 2009, N-S ARCH PHARMACOL, V379, P253, DOI 10.1007/s00210-008-0362-z
  14. Horton JD, 2002, J CLIN INVEST, V109, P1125, DOI 10.1172/JCI200215593
  15. Ibrahim SH, 2011, J HEPATOL, V54, P765, DOI 10.1016/j.jhep.2010.09.039
  16. Infantino V, 2007, BIOCHEM BIOPH RES CO, V356, P249, DOI 10.1016/j.bbrc.2007.02.114
  17. Jassim G, 2011, PSYCHOPHARMACOLOGY B, V219, P783
  18. Knebel B, 2010, DIABETOL STOFFWECHS, V5, P254
  19. Kokubun E, 2009, CELL BIOCHEM FUNCT, V27, P488, DOI 10.1002/cbf.1602
  20. Krakowski M, 2009, SCHIZOPHR RES, V110, P95, DOI 10.1016/j.schres.2009.02.006
  21. Kropp S, 2005, J NEUROPSYCH CLIN N, V17, P227, DOI 10.1176/appi.neuropsych.17.2.227
  22. Lauressergues E, 2010, N-S ARCH PHARMACOL, V381, P427, DOI 10.1007/s00210-010-0499-4
  23. Lauressergues E, 2012, NEUROPHARMACOLOGY, V62, P784, DOI 10.1016/j.neuropharm.2011.08.048
  24. Magliaro BC, 2009, BRAIN RES, V1283, P14, DOI 10.1016/j.brainres.2009.05.063
  25. Manu P, 2011, SCHIZOPHR RES, V134, P180
  26. Menga A, 2012, EUR NEUROPSYCHOPHARM, p[23, 978]
  27. Miljevic Cedo, 2010, Prog Neuropsychopharmacol Biol Psychiatry, V34, P303, DOI 10.1016/j.pnpbp.2009.11.024
  28. Mouradian-Stamatiadis L, 2002, PROG NEURO-PSYCHOPH, V26, P1409, DOI 10.1016/S0278-5846(02)00263-4
  29. Nadal-Casellas A, 2012, BIOCHEM CELL BIOL, V90, P164, DOI [10.1139/o11-069, 10.1139/O11-069]
  30. OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3
  31. Parsons B, 2009, SCHIZOPHR RES, V110, P103, DOI 10.1016/j.schres.2008.09.025
  32. Patel S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015845
  33. Raeder MB, 2006, MOL CELL BIOCHEM, V289, P167, DOI 10.1007/s11010-006-9160-4
  34. Riant E, 2009, ENDOCRINOLOGY, V150, P2109, DOI 10.1210/en.2008-0971
  35. Singh Om Prakash, 2008, Indian J Psychiatry, V50, P171, DOI 10.4103/0019-5545.43627
  36. Smith GC, 2009, SCHIZOPHR RES, V115, P30, DOI 10.1016/j.schres.2009.07.011
  37. Smith GC, 2008, DIABETOLOGIA, V51, P2309, DOI 10.1007/s00125-008-1152-3
  38. Sutton LP, 2011, NEUROSCIENCE, V199, P116, DOI 10.1016/j.neuroscience.2011.09.056
  39. Vidarsdottir S, 2010, J CLIN ENDOCR METAB, V95, P119
  40. von Wilmsdorff M, 2012, PHARMACOPSYCHIATRY, V46, P1
  41. Walss-Bass C, 2008, INT J NEUROPSYCHOPH, V11, P1097, DOI 10.1017/S1461145708008882
  42. Wei Z, 2006, PHARMACOGENOMICS J, V6, P279, DOI 10.1038/sj.tpj.6500373
  43. Xu Ping, 2006, J Zhejiang Univ Sci B, V7, P627, DOI 10.1631/jzus.2006.B0627
  44. Zhang XY, 2006, SCHIZOPHR RES, V81, P291, DOI 10.1016/j.schres.2005.10.011