ABRAHAO FONTES BAPTISTA

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina
LIM/54 - Laboratório de Bacteriologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • bookPart
    Dor em Neuropatias Infecciosas
    (2019) RAICHER, Irina; ANDRADE, Daniel Ciampi Araujo de; BAPTISTA, Abrahão Fontes; Sá, Katia Nunes; MACHADO, Luis dos Ramos; TEIXEIRA, Manoel Jacobsen
  • article 1 Citação(ões) na Scopus
    Sickle cell disease chronic joint pain: Clinical assessment based on maladaptive central nervous system plasticity
    (2022) LOPES, Tiago da Silva; BALLAS, Samir K.; SANTANA, Jamille Evelyn Rodrigues Souza; MELO-CARNEIRO, Pedro de; OLIVEIRA, Lilian Becerra de; SA, Katia Nunes; LOPES, Larissa Conceicao Dias; SILVA, Wellington dos Santos; LUCENA, Rita; BAPTISTA, Abrahao Fontes
    Chronic joint pain (CJP) is among the significant musculoskeletal comorbidities in sickle cell disease (SCD) individuals. However, many healthcare professionals have difficulties in understanding and evaluating it. In addition, most musculoskeletal evaluation procedures do not consider central nervous system (CNS) plasticity associated with CJP, which is frequently maladaptive. This review study highlights the potential mechanisms of CNS maladaptive plasticity related to CJP in SCD and proposes reliable instruments and methods for musculoskeletal assessment adapted to those patients. A review was carried out in the PubMed and SciELO databases, searching for information that could help in the understanding of the mechanisms of CNS maladaptive plasticity related to pain in SCD and that presented assessment instruments/methods that could be used in the clinical setting by healthcare professionals who manage chronic pain in SCD individuals. Some maladaptive CNS plasticity mechanisms seem important in CJP, including the impairment of pain endogenous control systems, central sensitization, motor cortex reorganization, motor control modification, and arthrogenic muscle inhibition. Understanding the link between maladaptive CNS plasticity and CJP mechanisms and its assessment through accurate instruments and methods may help healthcare professionals to increase the quality of treatment offered to SCD patients.
  • article 87 Citação(ões) na Scopus
    Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes
    (2019) MORYA, Edgard; MONTE-SILVA, Katia; BIKSON, Marom; ESMAEILPOUR, Zeinab; BIAZOLI JR., Claudinei Eduardo; FONSECA, Andre; BOCCI, Tommaso; FARZAN, Faranak; CHATTERJEE, Raaj; HAUSDORFF, Jeffrey M.; MACHADO, Daniel Gomes da Silva; BRUNONI, Andre Russowsky; MEZGER, Eva; MOSCALESKI, Luciane Aparecida; PEGADO, Rodrigo; SATO, Joao Ricardo; CAETANO, Marcelo Salvador; SA, Katia Nunes; TANAKA, Clarice; LI, Li Min; BAPTISTA, Abrahao Fontes; OKANO, Alexandre Hideki
    Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.