ANDRE OLIVEIRA PAGGIARO

Índice h a partir de 2011
4
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina
LIM/04 - Laboratório de Microcirurgia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 4 Citação(ões) na Scopus
    Evaluation of Radiosterilized Glyercerolated Amniotic Membranes as a Substrate for Cultured Human Epithelial Cells
    (2020) PAGGIARO, Andre O.; MATHOR, Monica B.; TEODORO, Walcy R.; ISAAC, Cesar; CAPELOZZI, Vera L.; GEMPERLI, Rolf
    Human amniotic membrane (HAM) is a biomaterial with biological properties beneficial to tissue repair, serving as a substrate for cell cultivation. Irradiation is used for tissue sterilization, but can damage the HAM structure. The objective of this paper was to construct a skin substitute, composed of human keratinocytes cultured on glycerolated HAMs, and to evaluate the influence radiation on subsequent cell culture growth. Four batches of HAMs were glycerolated, and half of them were radio-sterilzed with 25 kGy. Non-irradiated glycerolated HAM (ni-HAM) and irradiated glycerolated HAM (i-HAM) samples were then de-epithelized and analyzed using optical microscopy (Picrossirius staining), immunofluorescence and electron microscopy. Subsequently, keratinocytes were cultured on ni- and i-HAMs, and either immersed or positioned at the air-liquid interface. The basement membranes of the ni-HAM group remained intact following de-epithelialization, whereas the i-HAM group displayed no evidence or remnant presence of these membranes. Concerning the keratinocyte cultures, the ni-HAM substrate promoted the growth of multi-layered and differentiated epithelia. Keratinocytes cultured on i-HAM formed epithelium composed of three layers of stratification and discrete cell differentiation. The glycerolated HAM was compatible with cultured epithelia, demonstrating its potential as a skin substitute. Irradiation at 25 kGy caused structural damage to the amnion.
  • article 7 Citação(ões) na Scopus
    Effect of different human tissue processing techniques on SARS-CoV-2 inactivation-review
    (2021) PAGGIARO, Andre Oliveira; CARVALHO, Viviane Fernandes; GEMPERLI, Rolf
    The safety of the tissue transplant recipient is a top priority for tissue banks, and the emergence of the new coronavirus SARS-CoV-2 has raised significant concerns about the risks of releasing tissue for clinical use. In the present study, we conducted a literature review about the potential infectivity of SARS-CoV-2 in different biological tissues and the influence of various tissue processing and sterilization procedures on viral inactivation. The search revealed that SARS-CoV-2 binds to the human angiotensin-converting enzyme receptor to penetrate human cells. These receptors are present in skin cells, musculoskeletal tissue, amniotic membranes, cardiovascular tissue and ocular tissues, including the cornea. In general, we found that coronaviruses are stable at low temperatures, and inactivated upon exposure to extreme heat and pH. Notably, gamma irradiation, which has already been employed to inactivate SARS and MERS, could be useful for sterilizing skin, amnion and musculoskeletal tissues against SARS-CoV-2. We conclude that due to the limited information about the effects of physical and chemical tissue processing methods on viral neutralization, rigorous donor screening is still essential for tissue transplant recipient safety.