FERNANDA YAMAMOTO RICARDO DA SILVA

(Fonte: Lattes)
Índice h a partir de 2011
5
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/11 - Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 8 de 8
  • conferenceObject
    FEMALE RATS PRESENT HIGHER LUNG INFLAMMATION AFTER BRAIN DEATH FOLLOWED BY EX VIVO PERFUSION
    (2021) RICARDO-DA-SILVA, Fernanda Yamamoto; ARMSTRONG- JR., Roberto; OTTENS, Petra; ZANDEN, Judith van; VIDAL-DOS-SANTOS, Marina; MOREIRA, Luiz Felipe Pinho; ERASMUS, Michiel; LEUVENINK, Henri; BREITHAUPT-FALOPPA, Ana Cristina
  • article 3 Citação(ões) na Scopus
    Long-term lung inflammation is reduced by estradiol treatment in brain dead female rats
    (2021) RICARDO-DA-SILVA, Fernanda Yamamoto; ARMSTRONG-JR, Roberto; VIDAL-DOS-SANTOS, Marina; CORREIA, Cristiano de Jesus; SILVA, Raphael dos Santos Coutinho e; ANUNCIACAO, Lucas Ferreira da; MOREIRA, Luiz Felipe Pinho; LEUVENINK, Henri Gerrit Derk; BREITHAUPT-FALOPPA, Ana Cristina
    OBJECTIVES: Lung transplantation is limited by the systemic repercussions of brain death (BD). Studies have shown the potential protective role of 17 beta-estradiol on the lungs. Here, we aimed to investigate the effect of estradiol on the long-lasting lung inflammatory state to understand a possible therapeutic application in lung donors with BD. METHODS: Female Wistar rats were separated into 3 groups: BD, subjected to brain death (6h); E2-T0, treated with 17 beta-estradiol (50 mu g/mL, 2 mL/h) immediately after brain death; and E2-T3, treated with 17 beta-estradiol (50 mu g/ml, 2 ml/h) after 3h of BD. Complement system activity and macrophage presence were analyzed. TNF-alpha, IL-1 beta, IL-10, and IL-6 gene expression (RT-PCR) and levels in 24h lung culture medium were quantified. Finally, analysis of caspase-3 gene and protein expression in the lung was performed. RESULTS: Estradiol reduced complement C3 protein and gene expression. The presence of lung macrophages was not modified by estradiol, but the release of inflammatory mediators was reduced and TNF-alpha and IL-1 beta gene expression were reduced in the E2-T3 group. In addition, caspase-3 protein expression was reduced by estradiol in the same group. CONCLUSIONS: Brain death-induced lung inflammation in females is modulated by estradiol treatment. Study data suggest that estradiol can control the inflammatory response by modulating the release of mediators after brain death in the long term. These results strengthen the idea of estradiol as a therapy for donor lungs and improving transplant outcomes.
  • article 8 Citação(ões) na Scopus
    Estradiol prevented intestinal ischemia and reperfusion-induced changes in intestinal permeability and motility in male rats
    (2021) RICARDO-DA-SILVA, Fernanda Yamamoto; FANTOZZI, Evelyn Thais; RODRIGUES-GARBIN, Sara; DOMINGOS, Helori Vanni; OLIVEIRA-FILHO, Ricardo Martins; VARGAFTIG, Bernardo Boris; RIFFO-VASQUEZ, Yanira; BREITHAUPT-FALOPPA, Ana Cristina; TAVARES-DE-LIMA, Wothan
    OBJECTIVES: Ischemia and reperfusion (I/R) in the intestine could lead to severe endothelial injury, compromising intestinal motility. Reportedly, estradiol can control local and systemic inflammation induced by I/R injury. Thus, we investigated the effects of estradiol treatment on local repercussions in an intestinal I/R model. METHODS: Rats were subjected to ischemia via the occlusion of the superior mesenteric artery (45 min) followed by reperfusion (2h). Thirty minutes after ischemia induction (E30), 17 beta-estradiol (E2) was administered as a single dose (280 mu g/kg, intravenous). Sham-operated animals were used as controls. RESULTS: I/R injury decreased intestinal motility and increased intestinal permeability, accompanied by reduced mesenteric endothelial nitric oxide synthase (eNOS) and endothelin (ET) protein expression. Additionally, the levels of serum injury markers and inflammatory mediators were elevated. Estradiol treatment improved intestinal motility, reduced intestinal permeability, and increased eNOS and ET expression. Levels of injury markers and inflammatory mediators were also reduced following estradiol treatment. CONCLUSION: Collectively, our findings indicate that estradiol treatment can modulate the deleterious intestinal effects of I/R injury. Thus, estradiol mediates the improvement in gut barrier functions and prevents intestinal dysfunction, which may reduce the systemic inflammatory response.
  • article
    Protective role of 17 beta-estradiol treatment in renal injury on female rats submitted to brain death
    (2021) ARMSTRONG-JR, Roberto; RICARDO-DA-SILVA, Fernanda Yamamoto; VIDAL-DOS-SANTOS, Marina; CORREIA, Cristiano de Jesus; ANUNCIACAO, Lucas Ferreira; SILVA, Raphael dos Santos Coutinho e; MOREIRA, Luiz Felipe Pinho; LEUVENINK, Henri Gerrit Derk; BREITHAUPT-FALOPPA, Ana Cristina
    Background: Clinical and experimental data highlight the consequences of brain death on the quality of organs and demonstrate the importance of donor state to the results of transplantation. Female rats show higher cardio-pulmonary injury linked to decreased concentrations of female sex hormones after brain-dead (BD). This study evaluated the effect of 17 beta-estradiol on brain death induced renal injury in female rats. Methods: Female Wistar rats were randomically allocated into 4 groups: false-operation (Sham), BD, treatment with 17 beta-estradiol (50 mu g/mL, 2 mL/h) 3 h after brain death (E2-T3), or immediately after brain death confirmation (E2-T0). Creatinine, urea, cytokines, and complement system components were quantified. Renal injury markers, such as KIM-1, Caspase-3, BCL-2 and MMP2/9 were evaluated. Results: Brain death leads to increased kidney KIM-1 expression and longer 17 beta-estradiol treatment resulted in downregulation (P<0.0001). There was increase of neutrophil numbers in kidney from BD rats and E2 treatment was able to reduce it (P=0.018). Regarding complement elements, E2-T3 group evidenced E2 therapeutic effects, reducing C5b-9 (P=0.0004), C3aR (P=0.054) and C5aR (P=0.019). In parallel, there were 17 beta-estradiol effects in reducing MMP2 (P=0.0043), MMP9 (P=0.011), and IL-6 (P=0.024). Moreover, E2-T3 group improved renal function in comparison to BD group (P=0.0938). Conclusions: 17 beta-estradiol treatment was able to reduce acute kidney damage in BD female rats owing to its ability to prevent tissue damage, formation of C5b-9, and local synthesis of inflammatory mediators.
  • conferenceObject
    ESTRADIOL TREATMENT MODULATES ESTRADIOL RECEPTORS EXPRESSION AND REDUCES RENAL INJURY AFTER BRAIN DEATH IN FEMALE RATS
    (2021) CORREIA, Cristiano; ARMSTRONG- JR., Roberto; RICARDO-DA-SILVA, Fernanda Yamamoto; VIDAL-DOS-SANTOS, Marina; ANUNCIACAO, Lucas Ferreira Da; MOREIRA, Luiz Felipe Pinho; LEUVENINK, Henri; BREITHAUPT-FALOPPA, Ana Cristina
  • article 2 Citação(ões) na Scopus
    Lung Edema and Mortality Induced by Intestinal Ischemia and Reperfusion Is Regulated by VAChT Levels in Female Mice
    (2021) SANTANA, Fernanda P. R.; RICARDO-DA-SILVA, Fernanda Y.; FANTOZZI, Evelyn T.; PINHEIRO, Nathalia M.; TIBERIO, Iolanda F. L. C.; MOREIRA, Luiz Felipe Pinho; PRADO, Marco Antonio M.; PRADO, Vania F.; TAVARES-DE-LIMA, Wothan; PRADO, Carla Maximo; BREITHAUPT-FALOPPA, Ana Cristina
    Acute lung injury induced by intestinal ischemia/reperfusion (I/R) is a relevant clinical condition. Acetylcholine (ACh) and the alpha 7 nicotinic ACh receptor (nAChR alpha-7) are involved in the control of inflammation. Mice with reduced levels of the vesicular ACh transporter (VAChT), a protein responsible for controlling ACh release, were used to test the involvement of cholinergic signaling in lung inflammation due to intestinal I/R. Female mice with reduced levels of VAChT (VAChT-KDHOM) or wild-type littermate controls (WT) were submitted to intestinal I/R followed by 2 h of reperfusion. Mortality, vascular permeability, and recruitment of inflammatory cells into the lung were investigated. Parts of mice were submitted to ovariectomy (OVx) to study the effect of sex hormones or treated with PNU-282,987 (nAChR alpha-7 agonist). A total of 43.4% of VAChT-KDHOM-I/R mice died in the reperfusion period compared to 5.2% of WT I/R mice. The I/R increased lung inflammation in both genotypes. In VAChT-KDHOM mice, I/R increased vascular permeability and decreased the release of cytokines in the lung compared to WT I/R mice. Ovariectomy reduced lung inflammation and permeability compared to non-OVx, but it did not avoid mortality in VAChT-KDHOM-I/R mice. PNU treatment reduced lung permeability, increased the release of proinflammatory cytokines and the myeloperoxidase activity in the lungs, and prevented the increased mortality observed in VAChT-KDHOM mice. Cholinergic signaling is an important component of the lung protector response against intestinal I/R injury. Decreased cholinergic signaling seems to increase pulmonary edema and dysfunctional cytokine release that increased mortality, which can be prevented by increasing activation of nAChR alpha-7.
  • conferenceObject
    EVALUATION OF SEX DIFFERENCES IN ACUTE KIDNEY INJURY AFTER BD USING AN ISOLATED PERFUSED RAT KIDNEY MODEL
    (2021) ARMSTRONG- JR., Roberto; RICARDO-DA-SILVA, Fernanda Yamamoto; VIDAL-DOS-SANTOS, Marina; OTTENS, Petra; CORREIA, Cristiano; MOREIRA, Luiz Felipe Pinho; LEUVENINK, Henri; BREITHAUPT-FALOPPA, Ana Cristina
  • article 4 Citação(ões) na Scopus
    17 beta-Estradiol Treatment Protects Lungs Against Brain Death Effects in Female Rat Donor
    (2021) RICARDO-DA-SILVA, Fernanda Yamamoto; JR, Roberto Armstrong; VIDAL-DOS-SANTOS, Marina; CORREIA, Cristiano de Jesus; SILVA, Raphael dos Santos Coutinho e; ANUNCIACAO, Lucas Ferreira da; MOREIRA, Luiz Felipe Pinho; LEUVENINK, Hendrik Gerrit Derk; BREITHAUPT-FALOPPA, Ana Cristina
    Background. Brain death (BD) affects the viability of lungs for transplantation. A correlation exists between high-lung inflammation after BD and the decrease in female sex hormones, especially estradiol. Therefore, we investigated the effects of 17 beta-estradiol (E2) treatment on the lungs of female brain dead rats. Methods. Female Wistar rats were divided into 4 groups: BD (submitted to BD for 6 h), sham (false operated), E2-T0 (treated with E2 immediately after BD; 50 mu g/mL, 2 mL/h), and E2-T3 (treated with E2 after 3 h of BD; 50 mu g/mL, 2 mL/h). Lung edema, hemorrhage, and leukocyte infiltration were analyzed. Adhesion molecules were evaluated, and analysis of NO synthase gene and protein expression was performed using real-time PCR and immunohistochemistry, respectively. Release of chemokines and matrix degradation in the lungs was analyzed. Results. BD increased leukocyte infiltration, as shown by intravital microscopy (P = 0.017), bronchoalveolar lavage cell count (P = 0.016), the release of inflammatory mediators (P = 0.02), and expression of adhesion molecules. BD also increased microvascular permeability and the expression and activity of matrix metalloproteinase-9 in the lungs. E2 treatment reduced leukocyte infiltration, especially in the E2-T3 group, release of inflammatory mediators, adhesion molecules, and matrix metalloproteinase activity in the lungs. Conclusions. E2 treatment was successful in controlling the lung inflammatory response in females submitted to BD. Our results suggest that E2 directly decreases the release of chemokines, restraining cell traffic into the lungs. Thus, E2 has a therapeutic potential, and its role in improving donor lung quality should be explored further.