THAIS MARTINS DE LIMA

(Fonte: Lattes)
Índice h a partir de 2011
15
Projetos de Pesquisa
Unidades Organizacionais
LIM/51 - Laboratório de Emergências Clínicas, Hospital das Clínicas, Faculdade de Medicina
LIM/02 - Laboratório de Anatomia Médico-Cirúrgica, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • conferenceObject
    Effect of low level laser therapy on lung mechanics and inflammatory response
    (2013) CURY, Vivian; LIMA, Thais; ARIGA, Suely; BARBEIRO, Denise; PINHEIRO, Nathalia; PRADO, Carla Maximo; MORETTI, Ana Iochabel; SOUZA, Heraldo Possolo
  • article
    Molecular Basis of Hyperammonemic Encephalopathy in Fibrolamellar Hepatocellular Carcinoma
    (2023) SURJAN, Rodrigo Canada T.; LIMA, Thais M. de; SOUZA, Heraldo P. de; MACHADO, Marcel Cerqueira C.; ARDENGH, Jose C.
    Hyperammonemic encephalopathy is a potentially fatal condition associated with fibrolamellar hepatocellular carcinoma. The mechanism involved in hyperammonemia in patients with fibrolamellar carcinoma was unclear until a possible physiopathological pathway was recently proposed. An ornithine transcarboxylase dysfunction was suggested as a result of increased ornithine decarboxylase activity induced by c-Myc overexpression. This c-Myc overexpression resulted from Aurora kinase A overexpression derived from the activity of a chimeric kinase that is the final transcript of a deletion in chromosome 19, common to all fibrolamellar carcinomas. We performed the analysis of the expression of all enzymes involved and tested for the mutation in chromosome 19 in fresh frozen samples of fibrolamellar hepatocellular carcinoma, non-tumor liver, and hepatic adenomatosis. The specific DNAJB-PRKACA fusion protein that results from the recurrent mutation on chromosome 19 common to all fibrolamellar carcinoma was detected only in the fibrolamellar carcinoma sample. Fibrolamellar carcinoma and adenomyomatosis samples presented increased expression of Aurora kinase A, c-MYC, and ornithine decarboxylase when compared to normal liver, while ornithine transcarbamylase was decreased. The proposed physiopathological pathway is correct and that overexpression of c-Myc may also be responsible for hyperammonemia in patients with other types of rapidly growing hepatomas. This gives further evidence to apply new and adequate treatment to this severe complication.
  • article 1 Citação(ões) na Scopus
    Short-term Obesity Worsens Heart Inflammation and Disrupts Mitochondrial Biogenesis and Function in an Experimental Model of Endotoxemia
    (2022) PETRONI, Ricardo Costa; OLIVEIRA, Suelen Jeronymo Souza de; FUNGARO, Thais Pineda; ARIGA, Suely K. K.; BARBEIRO, Hermes Vieira; SORIANO, Francisco Garcia; LIMA, Thais Martins de
    Cardiomyopathy is a well-known complication of sepsis that may deteriorate when accompanied by obesity. To test this hypothesis we fed C57black/6 male mice for 6 week with a high fat diet (60% energy) and submitted them to endotoxemic shock using E. coli LPS (10 mg/kg). Inflammatory markers (cytokines and adhesion molecules) were determined in plasma and heart tissue, as well as heart mitochondrial biogenesis and function. Obesity markedly shortened the survival rate of mouse after LPS injection and induced a persistent systemic inflammation since TNF alpha, IL-1 beta, IL-6 and resistin plasma levels were higher 24 h after LPS injection. Heart tissue inflammation was significantly higher in obese mice, as detected by elevated mRNA expression of pro-inflammatory cytokines (IL-1 beta, IL-6 and TNF alpha). Obese animals presented reduced maximum respiratory rate after LPS injection, however fatty acid oxidation increased in both groups. LPS decreased mitochondrial DNA content and mitochondria biogenesis factors, such as PGC1 alpha and PGC1 beta, in both groups, while NRF1 expression was significantly stimulated in obese mice hearts. Mitochondrial fusion/fission balance was only altered by obesity, with no influence of endotoxemia. Obesity accelerated endotoxemia death rate due to higher systemic inflammation and decreased heart mitochondrial respiratory capacity.
  • article 11 Citação(ões) na Scopus
    Roux-en-Y Gastric Bypass Surgery Induces Distinct but Frequently Transient Effects on Acylcarnitine, Bile Acid and Phospholipid Levels
    (2018) FIAMONCINI, Jarlei; BARBOSA, Carina Fernandes; ARNONI JUNIOR, Jose Rubens; ARAUJO JUNIOR, Jose Celestino; TAGLIERI, Cinthia; SZEGO, Tiago; GELHAUS, Barbara; SOUZA, Heraldo Possolo de; DANIEL, Hannelore; LIMA, Thais Martins de
    Roux-en-Y gastric bypass (RYGB) is an effective method to achieve sustained weight loss, but the mechanisms responsible for RYGB effects have not yet been fully characterized. In this study, we profiled the concentrations of 143 lipid metabolites in dry blood spots (DBS) of RYGB patients. DBS from obese patients (BMI range 35-44 kg/m(2)) were collected 7 days before, 15 and 90 days after the surgery. LC-MS/MS was used to quantify acylcarnitines, phosphatidylcholines, sphingomyelins and bile acids. RYGB caused a rapid increase in acylcarnitine levels that proved to be only transient, contrasting with the sustained decrease in phosphatidylcholines and increase of sphingomyelins and bile acids. A PLS-DA analysis revealed a 3-component model (R-2 = 0.9, Q(2) = 0.74) with key metabolites responsible for the overall metabolite differences. These included the BCAA-derived acylcarnitines and sphingomyelins with 16 and 18 carbons. We found important correlations between the levels of BCAA-derived acylcarnitines and specific sphingomyelins with plasma cholesterol and triacylglycerol concentrations. Along with the marked weight loss and clinical improvements, RYGB induced specific alterations in plasma acylcarnitines, bile acid and phospholipid levels. This calls for more studies on RYGB effects aiming to elucidate the metabolic adaptations that follow this procedure.
  • article 16 Citação(ões) na Scopus
    Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells
    (2016) MUNOZ, Mindy; CRASKE, Madeleine; SEVERINO, Patricia; LIMA, Thais Martins de; LABHART, Paul; CHAMMAS, Roger; VELASCO, Irineu Tadeu; MACHADO, Marcel Cerqueira Cesar; EGAN, Brian; NAKAYA, Helder I.; SILVA, Fabiano Pinheiro da
    Antimicrobial peptides are an ancient family of molecules that emerged millions of years ago and have been strongly conserved during the evolutionary process of living organisms. Recently, our group described that the human antimicrobial peptide LL-37 migrates to the nucleus, raising the possibility that LL-37 could directly modulate transcription under certain conditions. Here, we showed evidence that LL-37 binds to gene promoter regions, and LL-37 gene silencing changed the transcriptional program of melanoma A375 cells genes associated with histone, metabolism, cellular stress, ubiquitination and mitochondria.