NIVALDO ALONSO

(Fonte: Lattes)
Índice h a partir de 2011
23
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Cirurgia, Faculdade de Medicina - Docente
Instituto Central, Hospital das Clínicas, Faculdade de Medicina - Médico
LIM/04 - Laboratório de Microcirurgia, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 9 Citação(ões) na Scopus
    Anterior convex lateral orbital wall: distinctive morphology in Apert syndrome
    (2018) LU, X.; FORTE, A. J.; SAWH-MARTINEZ, R.; WU, R.; CABREJO, R.; STEINBACHER, M.; ALPEROVICH, M.; ALONSO, N.; PERSING, J. A.
    Bony malformations of the orbit and alterations to the soft tissue in Apert syndrome contribute to ophthalmic dysfunction. Recognised structural malformation of the sphenoid and ethmoid sinuses, together with corresponding deformities in the anterior and middle cranial base, are characteristic. Our aim was to explore the underlying structural components of disfigurement and the consequent development of the orbit in patients with Apert syndrome over time by studying 18 preoperative computed tomographic (CT) scans of affected patients and 36 scans from controls. Cephalometric measurements related to the orbit were collected, and analysed with Materialise software. The patients with Apert syndrome had larger than normal external orbital horizontal angles between the ages of 6 months and 2 years. The inside horizontal angle was narrower at 16.36 degrees before 6 months, and continued to decrease into adulthood. The ethmoid and sphenoid side angles in affected patients consistently increased, starting at 7.93% and 14.68% of the external horizontal angle, respectively, during the first 6 months of age, and becoming 20.55% and 11.69%, respectively, in adulthood. In unaffected patients, both angles were less than 3% of the external horizontal angle overall. The orbital vertical angle also changed synchronously, with increasingly wide lateral orbits and shortened anteroposterior orbits. The anterior protrusion of the lateral orbital wall resulted from superior and posterior rotation of a curved, greater wing of the sphenoid, while the widened median orbital wall was caused by the widened ethmoid sinus. These resulted in bony deformities of the orbit, which predisposed to the visual impairments of Apert syndrome.
  • article 3 Citação(ões) na Scopus
    Nasopharyngeal airway and subcranial space analysis in Pfeiffer syndrome
    (2021) LU, X.; FORTE, A. J.; ALLAM, O.; PARK, K. E.; JUNN, A.; ALPEROVICH, M.; STEINBACHER, D. M.; TONELLO, C.; ALONSO, N.; PERSING, J. A.
    Tracheotomy in infancy helps patients with Pfeiffer syndrome to survive by preventing respiratory crisis, but difficulty in decannulation may consequently be a challenge. This study has investigated the regional abnormalities of the nasopharyngeal airway in children with Pfeiffer syndrome to provide an anatomical basis for the surgical treatment and decannulation of the upper airway. Seventy-two preoperative computed tomograms (CT) (Pfeiffer syndrome n=30; control n=42) were included. The airway volume, cross-sectional area, and cephalometrics were measured using Materialise software. Patients with Pfeiffer syndrome developed a 50% (p<0.001) reduction of nasal airway volume, and a 44% (p=0.003) restriction in pharyngeal airway volume. In patients with Pfeiffer syndrome the cross-sectional area at the choana was only half that of the controls (p<0.001). The posterior width of the nasal airway in patients with Pfeiffer syndrome was shortened by 13% (p=0.003), and the height reduced by 21% (p<0.001). The cross-sectional areas at the condylion and gonion levels, which indicate the calibre of the pharyngeal airway at the entrance and midsection, were reduced by 67% (p<0.001) and 47% (p<0.001), respectively, when compared with the controls. The volume of the nasal airway in patients with Pfeiffer syndrome was significantly restricted in length, height, and width, and by choanal stenosis in all cases in this cohort. The reduced anteroposterior length of the nasal airway contributed to the shortened maxilla more than the anteroposterior position. The limited height and width of the nasal pathway was the result of a hypoplastic sphenoid. Restricted mediolateral and anteroposterior dimensions were evident across the entire course of the pharyngeal airway. Mediolateral maxillary expansion in addition to maxillomandibular advancement is therefore likely to benefit these patients.