IGOR DE LUNA VIEIRA

(Fonte: Lattes)
Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 13 Citação(ões) na Scopus
    Overhauling CAR T Cells to Improve Efficacy, Safety and Cost
    (2020) CHICAYBAM, Leonardo; BONAMINO, Martin H.; INVITTI, Adriana Luckow; ROZENCHAN, Patricia Bortman; VIEIRA, Igor de Luna; STRAUSS, Bryan E.
    Gene therapy is now surpassing 30 years of clinical experience and in that time a variety of approaches has been applied for the treatment of a wide range of pathologies. While the promise of gene therapy was over-stated in the 1990's, the following decades were met with polar extremes between demonstrable success and devastating setbacks. Currently, the field of gene therapy is enjoying the rewards of overcoming the hurdles that come with turning new ideas into safe and reliable treatments, including for cancer. Among these modalities, the modification of T cells with chimeric antigen receptors (CAR-T cells) has met with clear success and holds great promise for the future treatment of cancer. We detail a series of considerations for the improvement of the CAR-T cell approach, including the design of the CAR, routes of gene transfer, introduction of CARs in natural killer and other cell types, combining the CAR approach with checkpoint blockade or oncolytic viruses, improving pre-clinical models as well as means for reducing cost and, thus, making this technology more widely available. While CAR-T cells serve as a prime example of translating novel ideas into effective treatments, certainly the lessons learned will serve to accelerate the current and future development of gene therapy drugs.
  • article 1 Citação(ões) na Scopus
    p19Arf sensitizes B16 melanoma cells to interferon-beta delivered via mesenchymal stem cells in vitro
    (2020) DA-COSTA, R. C.; VIEIRA, I. L.; HUNGER, A.; TAMURA, R. E.; STRAUSS, B. E.
    The immune stimulatory and anti-neoplastic functions of type I interferon have long been applied for the treatment of melanoma. However, the systemic application of high levels of this recombinant protein is often met with toxicity. An approach that provides localized, yet transient, production of type I interferon may overcome this limitation. We propose that the use of mesenchymal stem cells (MSCs) as delivery vehicles for the production of interferon-beta (IFN beta) may be beneficial when applied together with our cancer gene therapy approach. In our previous studies, we have shown that adenovirus-mediated gene therapy with IFN beta was especially effective in combination with p19Arf gene transfer, resulting in immunogenic cell death. Here we showed that MSCs derived from mouse adipose tissue were susceptible to transduction with adenovirus, expressed the transgene reliably, and yet were not especially sensitive to IFN beta production. MSCs used to produce IFN beta inhibited B16 mouse melanoma cells in a co-culture assay. Moreover, the presence of p19Arf in the B16 cells sensitizes them to the IFN beta produced by the MSCs. These data represent a critical demonstration of the use of MSCs as carriers of adenovirus encoding IFN beta and applied as an anticancer strategy in combination with p19Arf gene therapy.