DANIELE DE PAULA FARIA

(Fonte: Lattes)
Índice h a partir de 2011
13
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/43 - Laboratório de Medicina Nuclear, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 0 Citação(ões) na Scopus
    Assessment of bioactive peptides derived from laminin-111 as prospective breast cancer-targeting agents
    (2024) MENDONCA, Fernanda Ferreira; SOBRAL, Danielle Vieira; DURANTE, Ana Claudia Ranucci; MIRANDA, Ana Claudia Camargo; MEJIA, Jorge; FARIA, Daniele de Paula; MARQUES, Fabio Luiz Navarro; BARBOZA, Marycel Figols de; FUSCALDI, Leonardo Lima; MALAVOLTA, Luciana
    Breast cancer remains a pressing public health issue primarily affecting women. Recent research has spotlighted bioactive peptides derived from laminin-111, implicated in breast tumor development. Remarkably, the sequences IKVAV, YIGSR, and KAFDITYVRLKF from the alpha 1, beta 1, and gamma 1 chains, respectively, have garnered significant attention. This study aims to assess the potential of these radiolabeled peptides as targeting agents for breast cancer. The three peptides were synthesized using the Fmoc strategy, purified via reversed-phase high-performance liquid chromatography (RP-HPLC), and characterized through mass spectrometry. Iodine-131 (131I) radiolabeling was performed using the chloramine T method, exhibiting high radiochemical yield and stability for [131I]I-YIKVAV and [131I]I-YIGSR. Conversely, [131I]I-KAFDITYVRLKF demonstrated low radiochemical yield and stability and was excluded from the biological studies. The lipophilicity of the compounds ranged from - 2.12 to - 1.10. Serum protein binding assay for [131I]I-YIKVAV and [131I]I-YIGSR reached approximately equal to 48% and approximately equal to 25%, respectively. Affinity for breast cancer cells was evaluated using MDA-MB-231 and MCF-7 tumor cell lines, indicating the affinity of the radiopeptides with these tumor cells. Ex vivo biodistribution profiles of the radiopeptides were assessed in the MDA-MB-231 breast tumor animal model, revealing tumor tissue accumulation, supported by a high tumor-to-contralateral muscle ratio and autoradiography. These results signify the effective penetration of YIKVAV and YIGSR into tumor tissue. Therefore, the synthesized alpha 1 and beta 1 peptide fragments exhibit favorable characteristics as potential breast cancer-targeting agents, promising future exploration as radiopharmaceuticals for breast cancer.
  • article 0 Citação(ões) na Scopus
    Evaluation of Non-Invasive Methods for (R)-[11C]PK11195 PET Image Quantification in Multiple Sclerosis
    (2024) MANTOVANI, Dimitri B. A.; PITOMBEIRA, Milena S.; SCHUCK, Phelipi N.; ARAUJO, Adriel S. de; BUCHPIGUEL, Carlos Alberto; FARIA, Daniele de Paula; SILVA, Ana Maria M. da
    This study aims to evaluate non-invasive PET quantification methods for (R)-[C-11]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[C-11]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[C-11]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.