BRYAN ERIC STRAUSS

(Fonte: Lattes)
Índice h a partir de 2011
17
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 3 Citação(ões) na Scopus
    Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma
    (2022) CERQUEIRA, Otto Luiz Dutra; ANTUNES, Fernanda; ASSIS, Nadine G.; CARDOSO, Elaine C.; CLAVIJO-SALOMON, Maria A.; DOMINGUES, Ana C.; TESSAROLLO, Nayara G.; STRAUSS, Bryan E.
    Melanoma is the deadliest type of skin cancer with steadily increasing incidence worldwide during the last few decades. In addition to its tumor associated antigens (TAAs), melanoma has a high mutation rate compared to other tumors, which promotes the appearance of tumor specific antigens (TSAs) as well as increased lymphocytic infiltration, inviting the use of therapeutic tools that evoke new or restore pre-existing immune responses. Innovative therapeutic proposals, such as immune checkpoint inhibitors (ICIs), have emerged as effective options for melanoma. However, a significant portion of these patients relapse and become refractory to treatment. Likewise, strategies using viral vectors, replicative or not, have garnered confidence and approval by different regulatory agencies around the world. It is possible that further success of immune therapies against melanoma will come from synergistic combinations of different approaches. In this review we outline molecular features inherent to melanoma and how this supports the use of viral oncolysis and immunotherapies when used as monotherapies or in combination.
  • article 1 Citação(ões) na Scopus
    Induction of Immune-Stimulating Factors and Oncolysis Upon p14(ARF) Gene Transfer in Melanoma Cell Lines
    (2023) MENDONCA, Samir Andrade; ANTUNES, Fernanda; CERQUEIRA, Otto L. D.; VALLE, Paulo Roberto Del; HUNGER, Aline; OLIVEIRA, Percillia V. S. de; BRITO, Barbara; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Together with an anti-tumor immune response, oncolysis using a recombinant viral vector promises to eliminate cancer cells by both gene transfer and host-mediated functions. In this study we explore oncolysis induced by nonreplicating adenoviral vectors used for p14(ARF) and interferon-beta (hIFN beta) gene transfer in human melanoma cell lines, revealing an unexpected role for p14(ARF) in promoting cellular responses predictive of immune stimulation. Oncolysis was confirmed when UACC-62 (p53 wild-type) cells succumbed upon p14(ARF) gene transfer in vitro, whereas SK-Mel-29 (p53-mutant) benefitted from its combination with hIFN beta. In the case of UACC-62, in situ gene therapy in nude mice yielded reduced tumor progression in response to the p14(ARF) and hIFN beta combination. Potential for immune stimulation was revealed where p14(ARF) gene transfer in vitro was sufficient to induce emission of immunogenic cell death factors in UACC-62 and upregulate pro-immune genes, including IRF1, IRF7, IRF9, ISG15, TAP-1, and B2M. In SK-Mel-29, p14(ARF) gene transfer induced a subset of these factors. hIFN beta was, as expected, sufficient to induce these immune-stimulating genes in both cell lines. This work is a significant advancement for our melanoma gene therapy strategy because we revealed not only the induction of oncolysis, but also the potential contribution of p14(ARF) to immune stimulation.
  • article 7 Citação(ões) na Scopus
    Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy
    (2021) TESSAROLLO, Nayara Gusmao; DOMINGUES, Ana Carolina M.; ANTUNES, Fernanda; LUZ, Jean Carlos dos Santos da; RODRIGUES, Otavio Augusto; CERQUEIRA, Otto Luiz Dutra; STRAUSS, Bryan E.
    Simple Summary The treatment of cancer has progressed greatly with the advent of immunotherapy and gene therapy, including the use of nonreplicating adenoviral vectors to deliver genes with antitumor activity for cancer gene therapy. Even so, the successful application of these vectors may benefit from modifications in their design, including their molecular structure, so that specificity for the target cell is increased and off-target effects are minimized. With such improvements, we may find new opportunities for systemic administration of adenoviral vectors as well as the delivery of strategic antigen targets of an antitumor immune response. We propose that the improvement of nonreplicating adenoviral vectors will allow them to continue to hold a key position in cancer gene therapy and immunotherapy. Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.