BRYAN ERIC STRAUSS

(Fonte: Lattes)
Índice h a partir de 2011
17
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 26
  • article 635 Citação(ões) na Scopus
    Consensus guidelines for the definition, detection and interpretation of immunogenic cell death
    (2020) GALLUZZI, Lorenzo; VITALE, Ilio; WARREN, Sarah; ADJEMIAN, Sandy; AGOSTINIS, Patrizia; MARTINEZ, Aitziber Buque; CHAN, Timothy A.; COUKOS, George; DEMARIA, Sandra; DEUTSCH, Eric; DRAGANOV, Dobrin; EDELSON, Richard L.; FORMENTI, Silvia C.; FUCIKOVA, Jitka; GABRIELE, Lucia; GAIPL, Udo S.; GAMEIRO, Sofia R.; GARG, Abhishek D.; GOLDEN, Encouse; HAN, Jian; HARRINGTON, Kevin J.; HEMMINKI, Akseli; HODGE, James W.; HOSSAIN, Dewan Md Sakib; ILLIDGE, Tim; KARIN, Michael; KAUFMAN, Howard L.; KEPP, Oliver; KROEMER, Guido; LASARTE, Juan Jose; LOI, Sherene; LOTZE, Michael T.; MANIC, Gwenola; MERGHOUB, Taha; MELCHER, Alan A.; MOSSMAN, Karen L.; PROSPER, Felipe; REKDAL, Oystein; RESCIGNO, Maria; RIGANTI, Chiara; SISTIGU, Antonella; SMYTH, Mark J.; SPISEK, Radek; STAGG, John; STRAUSS, Bryan E.; TANG, Daolin; TATSUNO, Kazuki; GOOL, Stefaan W. van; VANDENABEELE, Peter; YAMAZAKI, Takahiro; ZAMARIN, Dmitriy; ZITVOGEL, Laurence; CESANO, Alessandra; MARINCOLA, Francesco M.
    Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
  • article 13 Citação(ões) na Scopus
    Overhauling CAR T Cells to Improve Efficacy, Safety and Cost
    (2020) CHICAYBAM, Leonardo; BONAMINO, Martin H.; INVITTI, Adriana Luckow; ROZENCHAN, Patricia Bortman; VIEIRA, Igor de Luna; STRAUSS, Bryan E.
    Gene therapy is now surpassing 30 years of clinical experience and in that time a variety of approaches has been applied for the treatment of a wide range of pathologies. While the promise of gene therapy was over-stated in the 1990's, the following decades were met with polar extremes between demonstrable success and devastating setbacks. Currently, the field of gene therapy is enjoying the rewards of overcoming the hurdles that come with turning new ideas into safe and reliable treatments, including for cancer. Among these modalities, the modification of T cells with chimeric antigen receptors (CAR-T cells) has met with clear success and holds great promise for the future treatment of cancer. We detail a series of considerations for the improvement of the CAR-T cell approach, including the design of the CAR, routes of gene transfer, introduction of CARs in natural killer and other cell types, combining the CAR approach with checkpoint blockade or oncolytic viruses, improving pre-clinical models as well as means for reducing cost and, thus, making this technology more widely available. While CAR-T cells serve as a prime example of translating novel ideas into effective treatments, certainly the lessons learned will serve to accelerate the current and future development of gene therapy drugs.
  • article 0 Citação(ões) na Scopus
    Interferons: key modulators of the immune system in cancer
    (2023) YUSUF, Nabiha; ALLIE, S. Rameeza; STRAUSS, Bryan E.
  • article 0 Citação(ões) na Scopus
    Cochlea cell-specific marker expression upon in vitro Hes1 knockdown
    (2021) BATISSOCO, A. C.; LEZIROVITZ, K.; ZANATTA, D. B.; HEMZA, C. R. M. L.; VASQUES, L. R.; STRAUSS, B. E.; MINGRONI-NETTO, R. C.; HADDAD, L. A.; BENTO, R. F.; OITICICA, J.
    NOTCH pathway proteins, including the transcriptional factor HES1, play crucial roles in the development of the inner ear by means of the lateral inhibition mechanism, in which supporting cells have their phenotype preserved while they are prevented from becoming hair cells. Genetic manipulation of this pathway has been demonstrated to increase hair cell number. The present study aimed to investigate gene expression effects in hair cells and supporting cells after Hes1-shRNA lentivirus transduction in organotypic cultures of the organ of Corti from postnatal-day-3 mice. Forty-eight hours after in vitro knockdown, Hes1 gene expression was reduced at both mRNA and protein levels. Myo7a (hair cell marker) and Sox2 (progenitor cell marker) mRNA levels also significantly increased. The modulation of gene expression in the organ of Corti upon Hes1 knockdown is consistent with cell phenotypes related to lateral inhibition mechanism interference in the inner ear. The lentivirus-based expression of Hes1-sh RNA is a valuable strategy for genetic interference in the organ of Corti and for future evaluation of its efficacy in protocols aiming at the regeneration of hair cells in vivo.
  • article 2 Citação(ões) na Scopus
    Potentiation of combined p19Arf and interferon-beta cancer gene therapy through its association with doxorubicin chemotherapy
    (2022) V, Ruan F. Medrano; SALLES, Thiago A.; DARIOLLI, Rafael; ANTUNES, Fernanda; FEITOSA, Valker A.; HUNGER, Aline; CATANI, Joao P. P.; MENDONCA, Samir A.; TAMURA, Rodrigo E.; LANA, Marlous G.; RODRIGUES, Elaine G.; STRAUSS, Bryan E.
    Balancing safety and efficacy is a major consideration for cancer treatments, especially when combining cancer immunotherapy with other treatment modalities such as chemotherapy. Approaches that induce immunogenic cell death (ICD) are expected to eliminate cancer cells by direct cell killing as well as activation of an antitumor immune response. We have developed a gene therapy approach based on p19Arf and interferon-beta gene transfer that, similar to conventional inducers of ICD, results in the release of DAMPS and immune activation. Here, aiming to potentiate this response, we explore whether association between our approach and treatment with doxorubicin (Dox), a known inducer of ICD, could further potentiate treatment efficacy without inducing cardiotoxicity, a critical side effect of Dox. Using central composite rotational design analysis, we show that cooperation between gene transfer and chemotherapy killed MCA205 and B16F10 cells and permitted the application of reduced viral and drug doses. The treatments also cooperated to induce elevated levels of ICD markers in MCA205, which correlated with improved efficacy of immunotherapy in vivo. Treatment of subcutaneous MCA205 tumors associating gene transfer and low dose (10 mg/kg) chemotherapy resulted in inhibition of tumor progression. Moreover, the reduced dose did not cause cardiotoxicity as compared to the therapeutic dose of Dox (20 mg/kg). The association of p19Arf/interferon-beta gene transfer and Dox chemotherapy potentiated antitumor response and minimized cardiotoxicity.
  • article 5 Citação(ões) na Scopus
    Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer
    (2018) STRAUSS, Bryan E.; SILVA, Gissele Rolemberg Oliveira; VIEIRA, Igor de Luna; CERQUEIRA, Otto Luiz Dutra; VALLE, Paulo Roberto Del; MEDRANO, Ruan Felipe Vieira; MENDONCA, Samir Andrade
    While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-beta cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.
  • article 8 Citação(ões) na Scopus
    Improving adenoviral vectors and strategies for prostate cancer gene therapy
    (2018) TAMURA, Rodrigo Esaki; LUNA, Igor Vieira de; LANA, Marlous Gomes; STRAUSS, Bryan E.
    Gene therapy has been evaluated for the treatment of prostate cancer and includes the application of adenoviral vectors encoding a suicide gene or oncolytic adenoviruses that may be armed with a functional transgene. In parallel, versions of adenoviral vector expressing the p53 gene (Ad-p53) have been tested as treatments for head and neck squamous cell carcinoma and non-small cell lung cancer. Although Ad-p53 gene therapy has yielded some interesting results when applied to prostate cancer, it has not been widely explored, perhaps due to current limitations of the approach. To achieve better functionality, improvements in the gene transfer system and the therapeutic regimen may be required. We have developed adenoviral vectors whose transgene expression is controlled by a p53-responsive promoter, which creates a positive feedback mechanism when used to drive the expression of p53. Together with improvements that permit efficient transduction, this new approach was more effective than the use of traditional versions of Ad-p53 in killing prostate cancer cell lines and inhibiting tumor progression. Even so, gene therapy is not expected to replace traditional chemotherapy but should complement the standard of care. In fact, chemotherapy has been shown to assist in viral transduction and transgene expression. The cooperation between gene therapy and chemotherapy is expected to effectively kill tumor cells while permitting the use of reduced chemotherapy drug concentrations and, thus, lowering side effects. Therefore, the combination of gene therapy and chemotherapy may prove essential for the success of both approaches.
  • article 19 Citação(ões) na Scopus
    Intratumoral Immunization by p19Arf and Interferon-beta Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma
    (2016) CATANI, Joao Paulo Portela; MEDRANO, Ruan F. V.; HUNGER, Aline; VALLE, Paulo Del; ADJEMIAN, Sandy; ZANATTA, Daniela Bertolini; KROEMER, Guido; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-beta (IFN beta) in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFN beta significantly inducedmarkers of immunogenic cell death. In situ gene therapy with IFN beta, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when usingmicroarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1 alpha, IL1 beta, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFN beta acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.
  • article 20 Citação(ões) na Scopus
    Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines
    (2011) CARVALHO, Fabricio de; COSTA, Erico T.; CAMARGO, Anamaria A.; GREGORIO, Juliana C.; MASOTTI, Cibele; ANDRADE, Valeria C. C.; STRAUSS, Bryan E.; CABALLERO, Otavia L.; ATANACKOVIC, Djordje; COLLEONI, Gisele W. B.
    The MAGE-C1/CT7 encodes a cancer/testis antigen (CTA), is located on the chromosomal region Xq26-27 and is highly polymorphic in humans. MAGE-C1/CT7 is frequently expressed in multiple myeloma (MM) that may be a potential target for immunotherapy in this still incurable disease. MAGEC1/CT7 expression is restricted to malignant plasma cells and it has been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function this protein in the pathophysiology of MM is not yet understood. Our objectives were (1) to clarify the role of MAGE-C1/CT7 in the control of cellular proliferation and cell cycle in myeloma and (2) to evaluate the impact of silencing MAGE-C1/CT7 on myeloma cells treated with bortezomib. Myeloma cell line SKO-007 was transduced for stable expression of shRNA-MAGE-C1/CT7. Downregulation of MAGE-C1/CT7 was confirmed by real time quantitative PCR and western blot. Functional assays included cell proliferation, cell invasion, cell cycle analysis and apoptosis. Western blot showed a 70-80% decrease in MAGE-C1/CT7 protein expression in inhibited cells (shRNA-MAGE-C1/CT7) when compared with controls. Functional assays did not indicate a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. However, we found a decreased percentage of cells in the G2/M phase of the cell cycle among inhibited cells, but not in the controls (p < 0.05). When myeloma cells were treated with bortezomib, we observed a 48% reduction of cells in the G2/M phase among inhibited cells while controls showed 13% (empty vector) and 9% (ineffective shRNA) reduction, respectively (p < 0.01). Furthermore, inhibited cells treated with bortezomib showed an increased percentage of apoptotic cells (Annexin V+/PI-) in comparison with bortezomib-treated controls (p < 0.001). We found that MAGE-C1/CT7 protects SKO-007 cells against bortezomib-induced apoptosis. Therefore, we could speculate that MAGE-C1/CT7 gene therapy could be a strategy for future therapies in MM, in particular in combination with proteasome inhibitors.
  • article 8 Citação(ões) na Scopus