LEONARDO YUJI TANAKA

(Fonte: Lattes)
Índice h a partir de 2011
12
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/64, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • conferenceObject
    Peri/epicellular protein disulfide isomerase PDI acts as an organizer of cytoskeletal mechanoadaptation in vascular smooth muscle cells
    (2018) TANAKA, Leonardo Yuji; ARAUJO, Thais Larissa; RODRIGUEZ, Andres Ignacio; FERRAZ, Mariana Sacrini Ayres; PELEGATI, Vitor Bianchin; SANTOS, Aline Mara; CESAR, Carlos Lens; ALENCAR, Adriano Mesquita; LAURINDO, Francisco Rafael Martins
  • conferenceObject
    Peri/epicellular Protein Disulfide Isomerase Reshapes Vascular Architecture to Counteracts Constrictive Remodeling
    (2014) TANAKA, Leonardo Yuji; ARAUJO, Haniel Alves; HIRONAKA, Gustavo Ken; ARAUJO, Thais Larissa; RODRIGUEZ, Andres Ignacio; CASAGRANDE, Annelise Silva; TAKIMURA, Celso Kiyoshi; LAURINDO, Francisco Rafael
  • article 34 Citação(ões) na Scopus
    Peri/Epicellular Protein Disulfide Isomerase Sustains Vascular Lumen Caliber Through an Anticonstrictive Remodeling Effect
    (2016) TANAKA, Leonardo Y.; ARAUJO, Haniel A.; HIRONAKA, Gustavo K.; ARAUJO, Thais L. S.; TAKIMURA, Celso K.; RODRIGUEZ, Andres I.; CASAGRANDE, Annelise S.; GUTIERREZ, Paulo S.; LEMOS-NETO, Pedro Alves; LAURINDO, Francisco R. M.
    Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (approximate to 25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of 1-integrin, and levels of reduced cell-surface 1-integrin, were diminished after PDI antibody treatment, implicating 1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream 1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to counteract inward remodeling in vascular pathophysiology.
  • article 7 Citação(ões) na Scopus
    Cell-surface HSP70 associates with thrombomodulin in endothelial cells
    (2019) ARAUJO, Thais L. S.; VENTURINI, Gabriela; MORETTI, Ana I. S.; TANAKA, Leonardo Y.; PEREIRA, Alexandre Costa; LAURINDO, Francisco R. M.
    Heat shock protein-70 (HSP70) is crucial for proteostasis and displays cell-protective effects. Meanwhile, enhanced levels of cell-surface (cs) and secreted HSP70 paradoxically associate with pathologic cardiovascular conditions. However, mechanisms regulating csHSP70 pool are unknown. We hypothesized that total and csHSP70 expressions are modulated by hemodynamic forces, major contributors to endothelial pathophysiology. We also investigated whether thrombomodulin, a crucial thromboresistance cell-surface protein, is a csHSP70 target. We used proteomic/western analysis, confocal microscopy, and cs-biotinylation to analyze the pattern and specific characteristics of intracellular and csHSP70. HSP70 interaction with thrombomodulin was investigated by confocal colocalization, en face immunofluorescence, proximity assay, and immunoprecipitation. Thrombomodulin activity was assessed by measured protein C activation two-step assay. Our results show that csHSP70 pool in endothelial cells (EC) exhibits a peculiar cluster-like pattern and undergoes enhanced expression by physiological arterial-level laminar shear stress. Conversely, total and csHSP70 expressions were diminished under low shear stress, a known proatherogenic hemodynamic pattern. Furthermore, total HSP70 levels were decreased in aortic arch (associated with proatherogenic turbulent flow) compared with thoracic aorta (associated with atheroprotective laminar flow). Importantly, csHSP70 co-localized with thrombomodulin in cultured EC and aorta endothelium; proximity ligation assays and immunoprecipitation confirmed their physical interaction in EC. Remarkably, immunoneutralization of csHSP70 enhanced thrombomodulin activity in EC and aorta ex vivo. Overall, proatherogenic hemodynamic forces promote reduced total HSP70 expression, which might implicate in disturbed proteostasis; meanwhile, the associated decrease in cs-HSP70 pool associates with thromboresistance signaling. Cell-surface HSP70 (csHSP70) expression regulation and csHSP70 targets in vascular cells are unknown. We showed that HSP70 levels are shear stress-modulated and decreased under proatherogenic conditions. Remarkably, csHSP70 binds thrombomodulin and inhibits its activity in endothelial cells. This mechanism can potentially explain some deleterious effects previously associated with high extracellular HSP70 levels, as csHSP70 potentially could restrict thromboresistance and support thrombosis/inflammation in stress situations.
  • bookPart
    Forças hemodinâmicas no endotélio: da mecanotransdução às implicações no desenvolvimento da aterosclerose
    (2016) FERNANDES, Denise C.; LAURINDO, Francisco Rafael Martins; ARAUJO, Thaís L. S.; TANAKA, Leonardo Y.
  • article 17 Citação(ões) na Scopus
    Peri/epicellular protein disulfide isomerase-A1 acts as an upstream organizer of cytoskeletal mechanoadaptation in vascular smooth muscle cells
    (2019) TANAKA, Leonardo Y.; ARAUJO, Thais L. S.; I, Andres Rodriguez; FERRAZ, Mariana S.; PELEGATI, Vitor B.; MORAIS, Mauro C. C.; SANTOS, Aline M. dos; CESAR, Carlos L.; RAMOS, Alexandre F.; ALENCAR, Adriano M.; LAURINDO, Francisco R. M.
    Although redox processes closely interplay with mechanoresponses to control vascular remodeling, redox pathways coupling mechanostimulation to cellular cytoskeletal organization remain unclear. The peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) supports postinjury vessel remodeling. Using distinct models, we investigated whether pecPDIA1 could work as a redox-dependent organizer of cytoskeletal mechanoresponses. In vascular smooth muscle cells (VSMCs), pecPDIA1 immunoneutralization impaired stress fiber assembly in response to equibiaxial stretch and, under uniaxial stretch, significantly perturbed cell repositioning perpendicularly to stretch orientation. During cyclic stretch, pecPDIA1 supported thiol oxidation of the known mechanosensor beta(1)-integrin and promoted polarized compartmentalization of suifenylated proteins. Using traction force microscopy, we showed that pecPDIA1 organizes intracellular force distribution. The net contractile moment ratio of platelet-derived growth factor-exposed to basal VSMCs decreased from 0.90 +/- 0.09 (IgG-exposed controls) to 0.70 +/- 0.08 after pecPDIA1 neutralization (P < 0.05), together with an enhanced coefficient of variation for distribution of force modules, suggesting increased noise. Moreover, in a single cell model, pecPDIA1 neutralization impaired migration persistence without affecting total distance or velocity, whereas siRNA-mediated total PDIA1 silencing disabled all such variables of VSMC migration. Neither expression nor total activity of the master mechanotransmitter/regulator RhoA was affected by pecPDIA1 neutralization. However, cyclic stretch-induced focal distribution of membrane-bound RhoA was disrupted by pecPDI inhibition, which promoted a nonpolarized pattern of RhoA/caveolin-3 cluster colocalization. Accordingly, FRET biosensors showed that pecPDIA1 supports localized RhoA activity at cell protrusions versus perinuclear regions. Thus. pecPDI acts as a thiol redox-dependent organizer and noise reducer mechanism of cytoskeletal repositioning, oxidant generation, and localized RhoA activation during a variety of VSMC mechanoresponses. NEW & NOTEWORTHY Effects of a peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) during mechanoregulation in vascular smooth muscle cells (VSMCs) were highlighted using approaches such as equibiaxial and uniaxial stretch, random single cell migration, and traction force microscopy. pecPDIA1 regulates organization of the cytoskeleton and minimizes the noise of cell alignment, migration directionality, and persistence. pecPDIA1 mechanisms involve redox control of beta(1)-integrin and localized RhoA activation. pecPDIA1 acts as a novel organizer of mechanoadaptation responses in VSMCs.