ANA TERESA AZEVEDO SACHETTO

(Fonte: Lattes)
Índice h a partir de 2011
5
Projetos de Pesquisa
Unidades Organizacionais

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 6 Citação(ões) na Scopus
    Involvement of von Willebrand factor and botrocetin in the thrombocytopenia induced by Bothrops jararaca snake venom
    (2021) THOMAZINI, Camila Martos; SACHETTO, Ana Teresa Azevedo; ALBUQUERQUE, Cynthia Zaccanini de; MATTARAIA, Vania Gomes de Moura; OLIVEIRA, Ana Karina de; SERRANO, Solange Maria de Toledo; LEBRUN, Ivo; BARBARO, Katia Cristina; SANTORO, Marcelo Larami
    Author summary Envenomation by snakebites is a major burden to tropical and subtropical areas in the world. Many snake species produce venoms that, when injected into victims, cause bleedings and other associated symptoms and signs. This work aimed to understand the mechanisms that lead to a fall in blood platelet counts after bites by a snake that inhabits in southeastern Brazil, the lance-headed snake Bothrops jararaca (popularly known as jararaca). We used experimental approaches to understand the involvement of a protein from jararaca venom, called botrocetin, and a protein present in our blood (von Willebrand factor) in the fall of platelet counts. We observed that botrocetin alters von Willebrand factor, but this mechanism in not important for the decrease in platelet counts. We show that jararaca snake venom disturb blood platelets in a complex and intricate way, and that other venom compounds are involved in the decrease of platelet counts during snakebite envenomation. Patients bitten by snakes consistently manifest a bleeding tendency, in which thrombocytopenia, consumption coagulopathy, mucous bleeding, and, more rarely, thrombotic microangiopathy, are observed. Von Willebrand factor (VWF) is required for primary hemostasis, and some venom proteins, such as botrocetin (a C-type lectin-like protein) and snake venom metalloproteinases (SVMP), disturb the normal interaction between platelets and VWF, possibly contributing to snakebite-induced bleedings. To understand the relationship among plasma VWF, platelets, botrocetin and SVMP from Bothrops jararaca snake venom (BjV) in the development of thrombocytopenia, we used (a) Wistar rats injected s.c. with BjV preincubated with anti-botrocetin antibodies (ABA) and/or Na-2-EDTA (a SVMP inhibitor), and (b) VWF knockout mice (Vwf(-/-)) injected with BjV. Under all conditions, BjV induced a rapid and intense thrombocytopenia. In rats, BjV alone reduced the levels of VWF:Ag, VWF:CB, high molecular weight multimers of VWF, ADAMTS13 activity, and factor VIII. Moreover, VWF:Ag levels in rats that received BjV preincubated with Na-2-EDTA and/or ABA tended to recover faster. In mice, BjV caused thrombocytopenia in both Vwf(-/-) and C57BL/6 (background control) strains, and VWF:Ag levels tended to decrease in C57BL/6, demonstrating that thrombocytopenia was independent of the presence of plasma VWF. These findings showed that botrocetin present in BjV failed to affect the extent or the time course of thrombocytopenia induced by envenomation, but it contributed to decrease the levels and function of plasma VWF. Thus, VWF alterations during B. jararaca envenomation are an ancillary event, and not the main mechanism leading to decreased platelet counts.
  • article 6 Citação(ões) na Scopus
    Liver gene regulation of hemostasis-related factors is altered by experimental snake envenomation in mice
    (2020) SACHETTO, Ana Teresa Azevedo; JENSEN, Jose Ricardo; SANTORO, Marcelo Larami
    Few studies have addressed gene expression of hemostasis-related factors during acute thrombo-hemorrhagic diseases. Bites by the lanced-headed viper Bothrops jaracaca induce rapid hemostatic disturbances in victims, leading to systemic bleedings, thrombocytopenia and consumption coagulopathy. Although circulating levels of coagulation factors recover rapidly after administration of specific antivenom therapy, it is unclear if B. jararaca venom (BjV) upregulates the mRNA synthesis of hepatic hemostasis-related factors, or if the recovery occurs under basal conditions after the neutralization of venom components by antivenom. Thus, we aimed to investigate if BjV regulates gene expression of important hemostasis-related factors synthetized by the liver. On that account, Swiss mice were injected with saline or BjV (1.6 mg/kg b.w, s.c.), and after 3, 6 and 24 h blood samples and liver fragments were collected to analyze mRNA expression by real-time qPCR. Increased gene expression of fibrinogen chains, haptoglobin and STAT3 was observed during envenomation, particularly at 3 and 6 h. At 24h, mRNA levels of F10 were raised, while those of Serpinc1, Proc and Adamts13 were diminished. Surprisingly, F3 mRNA levels were steadily decreased at 3 h. Gene expression of Thpo, F7, F5 Tfpi, Mug1 was unaltered. mRNA levels of Vwf, P4hb, F8, F2, Plg, and Serpinf2 were minimally altered, but showed important associations with Nfkb1 gene expression. In conclusion, snakebite envenomation upregulates hepatic mRNA synthesis particularly of fibrinogen chains, and acute-phase markers. This response explains the fast recovery of fibrinogen levels after antivenom administration to patients bitten by B. jararaca snakes.
  • article 33 Citação(ões) na Scopus
    Rutin (quercetin-3-rutinoside) modulates the hemostatic disturbances and redox imbalance induced by Bothrops jararaca snake venom in mice
    (2018) SACHETTO, Ana Teresa Azevedo; ROSA, Jaqueline Gomes; SANTORO, Marcelo Larami
    Snakebites are a major Collective Health problem worldwide. In Brazil, Bothrops jararaca snake venom (BjV) evokes hemostatic disturbances, bleeding manifestations, and redox status imbalance. Specific antivenom therapy, although efficacious to revert most snakebite-induced manifestations, is incapable of treating secondary manifestations, such as oxidative/nitrosative stress. Searching for new complementary therapies that could attenuate physiological derangements triggered by envenomation, we elected to test quercetin-3-rutinoside (rutin) by its potential as both a potent antioxidant and a hemostasis modulatory compound. The activity of rutin was evaluated both on the biological activities of crude BjV in vitro, and in vivo by the ability of rutin (14.4 mg/kg b.w.) to modulate hematological, hemostatic and redox status markers altered by BjV injection (1.6 mg/kg b.w., s.c.) in mice. In vitro, rutin failed to inhibit BjV-induced platelet aggregation and biological activities of major BjV enzymes (metalloproteinases, phospholipases A2, serine proteases, and L-amino acid oxidases). On the other hand, rutin attenuated local hemorrhage, and the increase in reactive species, prevented the fall in RBC counts and fibrinogen levels, diminished tail bleeding and shortened prothrombin time (PT) evoked by envenomation. Furthermore, rutin reduced tissue factor (TF) activity and altered the protein expression of TF in liver, lungs, heart and skin. In conclusion, the disturbances in redox status and hemostatic system induced by B. jararaca envenomation were modulated by rutin, suggesting it has a great potential to be used as an ancillary therapeutic agent for snakebites.