CARLOS ALBERTO MOREIRA FILHO

(Fonte: Lattes)
Índice h a partir de 2011
19
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Pediatria, Faculdade de Medicina - Docente
LIM/36 - Laboratório de Pediatria Clínica, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 12
  • article 7 Citação(ões) na Scopus
    Age-related transcriptional modules and TF-miRNA-mRNA interactions in neonatal and infant human thymus
    (2020) BERTONHA, Fernanda Bernardi; BANDO, Silvia Yumi; FERREIRA, Leandro Rodrigues; CHACCUR, Paulo; VINHAS, Christiana; ZERBINI, Maria Claudia Nogueira; CARNEIRO-SAMPAIO, Magda Maria; MOREIRA-FILHO, Carlos Alberto
    The human thymus suffers a transient neonatal involution, recovers and then starts a process of decline between the 1st and 2nd years of life. Age-related morphological changes in thymus were extensively investigated, but the genomic mechanisms underlying this process remain largely unknown. Through Weighted Gene Co-expression Network Analysis (WGCNA) and TF-miRNA-mRNA integrative analysis we studied the transcriptome of neonate and infant thymic tissues grouped by age: 0-30 days (A); 31 days-6 months (B); 7-12 months (C); 13-18 months (D); 19-31 months (E). Age-related transcriptional modules, hubs and high gene significance (HGS) genes were identified, as well as TF-miRNA-hub/HGS co-expression correlations. Three transcriptional modules were correlated with A and/or E groups. Hubs were mostly related to cellular/metabolic processes; few were differentially expressed (DE) or related to T-cell development. Inversely, HGS genes in groups A and E were mostly DE. In A (neonate) one third of the hyper-expressed HGS genes were related to T-cell development, against one-twentieth in E, what may correlate with the early neonatal depletion and recovery of thymic T-cell populations. This genomic mechanism is tightly regulated by TF-miRNA-hub/HGS interactions that differentially govern cellular and molecular processes involved in the functioning of the neonate thymus and in the beginning of thymic decline.
  • conferenceObject
    TRISOMY 21-DRIVEN GENE EXPRESSION DYSREGULATION IN HUMAN THYMUS: CONVERGING GENOMIC AND EPIGENOMIC MECHANISMS
    (2016) MOREIRA-FILHO, Carlos Alberto; BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; SILVA, Filipi Nascimento; COSTA, Luciano da Fontoura; FEREIRA, Leandro Rodrigues; CARNEIRO-SAMPAIO, Magda
  • article 7 Citação(ões) na Scopus
    Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment in refractory mesial temporal lobe epilepsy patients
    (2021) BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; PIMENTEL-SILVA, Luciana Ramalho; OLIVEIRA, Joao Gabriel Mansano de; CARNEIRO, Marco Antonio Duarte; OKU, Mariana Hiromi Manoel; WEN, Hung-Tzu; CASTRO, Luiz Henrique Martins; MOREIRA-FILHO, Carlos Alberto
    In about a third of the patients with epilepsy the seizures are not drug-controlled. The current limitation of the antiepileptic drug therapy derives from an insufficient understanding of epilepsy pathophysiology. In order to overcome this situation, it is necessary to consider epilepsy as a disturbed network of interactions, instead of just looking for changes in single molecular components. Here, we studied CA3 transcriptional signatures and dentate gyrus histopathologic alterations in hippocampal explants surgically obtained from 57 RMTLE patients submitted to corticoamygdalohippocampectomy. By adopting a systems biology approach, integrating clinical, histopathological, and transcriptomic data (weighted gene co-expression network analysis), we were able to identify transcriptional modules highly correlated with age of disease onset, cognitive dysfunctions, and granule cell alterations. The enrichment analysis of transcriptional modules and the functional characterization of the highly connected genes in each trait-correlated module allowed us to unveil the modules' main biological functions, paving the way for further investigations on their roles in RMTLE pathophysiology. Moreover, we found 15 genes with high gene significance values which have the potential to become novel biomarkers and/or therapeutic targets in RMTLE.
  • conferenceObject
    Complete Transcriptional Network Driven-View of Thymic Hypofunction in Down Syndrome
    (2014) MOREIRA-FILHO, Carlos Alberto; BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; FEREIRA, Leandro Rodrigues; SILVA, Filipi Nascimento; COSTA, Luciano da Fontoura; GRASSI, Marcilia Sierro; CARNEIRO-SAMPAIO, Magda
  • article 16 Citação(ões) na Scopus
    Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants
    (2016) MOREIRA-FILHO, Carlos Alberto; BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; SILVA, Filipi Nascimento; COSTA, Luciano da Fontoura; FERREIRA, Leandro Rodrigues; FURLANETTO, Glaucio; CHACUR, Paulo; ZERBINI, Maria Claudia Nogueira; CARNEIRO-SAMPAIO, Magda
    Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue - obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT) - and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the ""canonical"" way of thymus functioning. Conversely, DS networks represent a ""non-canonical"" way, i. e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
  • conferenceObject
    MODULAR TRANSCRIPTIONAL REPERTOIRE AND microRNA-TARGET ANALYSES IN THYMIC TISSUE OF DOWN SYNDROME INFANTS
    (2015) MOREIRA-FILHO, Carlos Alberto; BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; SILVA, Filipi Nascimento; COSTA, Luciano da Fontoura; FEREIRA, Leandro Rodrigues; CARNEIRO-SAMPAIO, Magda
  • article 13 Citação(ões) na Scopus
    Community Structure Analysis of Transcriptional Networks Reveals Distinct Molecular Pathways for Early- and Late-Onset Temporal Lobe Epilepsy with Childhood Febrile Seizures
    (2015) MOREIRA-FILHO, Carlos Alberto; BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; IAMASHITA, Priscila; SILVA, Filipi Nascimento; COSTA, Luciano da Fontoura; SILVA, Alexandre Valotta; CASTRO, Luiz Henrique Martins; WEN, Hung-Tzu
    Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery.
  • article 1 Citação(ões) na Scopus
    Gene expression alterations in the postmortem hippocampus from older patients with bipolar disorder-A hypothesis generating study
    (2023) NASCIMENTO, Camila; KIM, Helena Kyunghee; NUNES, Paula Villela; LEITE, Renata Elaine Paraiso; CRISTINA, De Oliveira Katia; BARBOSA, Andre; BERTONHA, Fernanda Bernardi; MOREIRA-FILHO, Carlos Alberto; JACOB-FILHO, Wilson; NITRINI, Ricardo; PASQUALUCCI, Carlos A.; GRINBERG, Lea Tenenholz; SUEMOTO, Claudia Kimie; BRENTANI, Helena Paula; LAFER, Beny
    Bipolar disorder (BD) presents with a progressive course in a subset of patients. However, our knowledge of molecular changes in older BD is limited. In this study, we examined gene expression changes in the hippocampus of BD from the Biobank of Aging Studies to identify genes of interest that warrant further exploration. RNA was extracted from the hippocampus from 11 subjects with BD and 11 age and sex-matched controls. Gene expression data was generated using the SurePrint G3 Human Gene Expression v3 microarray. Rank feature selection was performed to identify a subset of features that can optimally differentiate BD and controls. Genes ranked in the top 0.1% with log2 fold change >1.2 were identified as genes of interest. Average age of the subjects was 64 years old; duration of disease was 21 years and 82% were female. Twenty-five genes were identified, of which all but one was downregulated in BD. Of these, CNTNAP4, MAP4, SLC4A1, COBL, and NEURL4 had been associated with BD and other psychiatric conditions in previous studies. We believe our findings have identified promising targets to inform future studies aiming to understand the pathophysiology of BD in later life.
  • article 17 Citação(ões) na Scopus
    Minipuberty and Sexual Dimorphism in the Infant Human Thymus
    (2018) MOREIRA-FILHO, Carlos Alberto; BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; FERREIRA, Leandro Rodrigues; VINHAS, Christiana de Freitas; OLIVEIRA, Lucila Habib Bourguignon; ZERBINI, Maria Claudia Nogueira; FURLANETTO, Glaucio; CHACCUR, Paulo; CARNEIRO-SAMPAIO, Magda
    AIRE expression in thymus is downregulated by estrogen after puberty, what probably renders women more susceptible to autoimmune disorders. Here we investigated the effects of minipuberty on male and female infant human thymic tissue in order to verify if this initial transient increase in sex hormones - along the first six months of life - could affect thymic transcriptional network regulation and AIRE expression. Gene co-expression network analysis for differentially expressed genes and miRNA-target analysis revealed sex differences in thymic tissue during minipuberty, but such differences were not detected in the thymic tissue of infants aged 7-18 months, i.e. the non-puberty group. AIRE expression was essentially the same in both sexes in minipuberty and in non-puberty groups, as assessed by genomic and immunohistochemical assays. However, A/RE-interactors networks showed several differences in all groups regarding gene-gene expression correlation. Therefore, minipuberty and genomic mechanisms interact in shaping thymic sexual dimorphism along the first six months of life.
  • article 13 Citação(ões) na Scopus
    Prevalence of Inflammatory Pathways Over Immuno-Tolerance in Peripheral Blood Mononuclear Cells of Recent-Onset Type 1 Diabetes
    (2022) SANTOS, Aritania Sousa; CUNHA-NETO, Edecio; GONFINETTI, Nelson Vinicius; BERTONHA, Fernanda Bernardi; BROCHET, Pauline; BERGON, Aurelie; MOREIRA-FILHO, Carlos Alberto; CHEVILLARD, Christophe; SILVA, Maria Elizabeth Rossi da
    BackgroundChanges in innate and adaptive immunity occurring in/around pancreatic islets had been observed in peripheral blood mononuclear cells (PBMC) of Caucasian T1D patients by some, but not all researchers. The aim of our study was to investigate whether gene expression patterns of PBMC of the highly admixed Brazilian population could add knowledge about T1D pathogenic mechanisms. MethodsWe assessed global gene expression in PBMC from two groups matched for age, sex and BMI: 20 patients with recent-onset T1D (<= 6 months from diagnosis, in a time when the autoimmune process is still highly active), testing positive for one or more islet autoantibodies and 20 islet autoantibody-negative healthy controls. ResultsWe identified 474 differentially expressed genes between groups. The most expressed genes in T1D group favored host defense, inflammatory and anti-bacterial/antiviral effects (LFT, DEFA4, DEFA1, CTSG, KCNMA1) and cell cycle progression. Several of the downregulated genes in T1D target cellular repair, control of inflammation and immune tolerance. They were related to T helper 2 pathway, induction of FOXP3 expression (AREG) and immune tolerance (SMAD6). SMAD6 expression correlated negatively with islet ZnT8 antibody. The expression of PDE12, that offers resistance to viral pathogens was decreased and negatively related to ZnT8A and GADA levels. The increased expression of long non coding RNAs MALAT1 and NEAT1, related to inflammatory mediators, autoimmune diseases and innate immune response against viral infections reinforced these data ConclusionsOur analysis suggested the activation of cell development, anti-infectious and inflammatory pathways, indicating immune activation, whereas immune-regulatory pathways were downregulated in PBMC from recent-onset T1D patients with a differential genetic profile.