BRYAN SAUNDERS

(Fonte: Lattes)
Índice h a partir de 2011
16
Projetos de Pesquisa
Unidades Organizacionais
LIM/17 - Laboratório de Investigação em Reumatologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • article 35 Citação(ões) na Scopus
    Effects of Sodium Bicarbonate Supplementation on Muscular Strength and Endurance: A Systematic Review and Meta-analysis
    (2020) GRGIC, Jozo; RODRIGUEZ, Ramon F.; GAROFOLINI, Alessandro; SAUNDERS, Bryan; BISHOP, David J.; SCHOENFELD, Brad J.; PEDISIC, Zeljko
    Background The effects of sodium bicarbonate on muscular strength and muscular endurance are commonly acknowledged as unclear due to the contrasting evidence on the topic. Objective To conduct a systematic review and meta-analysis of studies exploring the acute effects of sodium bicarbonate supplementation on muscular strength and endurance. Methods A search for studies was performed using five databases. Meta-analyses of standardized mean differences (SMDs) were performed using a random-effects model to determine the effects of sodium bicarbonate supplementation on muscular strength (assessed by changes in peak force [N], peak torque [N m], or maximum load lifted [kg]) and muscular endurance (assessed by changes in the number of repetitions performed, isokinetic total work, or time to maintain isometric force production). Subgroup meta-analyses were conducted for the muscular endurance of small vs. large muscle groups and muscular strength tested in a rested vs. fatigued state. A random-effects meta-regression analysis was used to explore possible trends in the effects of: (a) timing of sodium bicarbonate ingestion; and (b) acute increase in blood bicarbonate concentration (from baseline to pre-exercise), on muscular endurance and muscular strength. Results Thirteen studies explored the effects of sodium bicarbonate on muscular endurance and 11 on muscular strength. Sodium bicarbonate supplementation was found to be ergogenic for muscular endurance (SMD = 0.37; 95% confidence interval [CI]: 0.15, 0.59; p = 0.001). The performance-enhancing effects of sodium bicarbonate were significant for both small (SMD = 0.31; 95% CI: 0.04, 0.59; p = 0.025) and large muscle groups (SMD = 0.40; 95% CI: 0.13, 0.66; p = 0.003). Sodium bicarbonate ingestion was not found to enhance muscular strength (SMD = - 0.03; 95% CI: - 0.18, 0.12; p = 0.725). No significant effects were found regardless of whether the testing was carried out in a rested (SMD = 0.02; 95% CI: - 0.09, 0.13; p = 0.694) or fatigued (SMD = - 0.16; 95% CI: - 0.59, 0.28; p = 0.483) state. No significant linear trends in the effects of timing of sodium bicarbonate ingestion or acute increase in blood bicarbonate concentrations on muscular endurance or muscular strength were found. Conclusions Overall, sodium bicarbonate supplementation acutely improves muscular endurance of small and large muscle groups, but no significant ergogenic effect on muscular strength was found.
  • article 1 Citação(ões) na Scopus
    Caffeine, CYP1A2 Genotype, and Exercise Performance: A Systematic Review and Meta-analysis
    (2024) BARRETO, Gabriel; ESTEVES, Gabriel p.; MARTICORENA, Felipe; OLIVEIRA, Tamires n.; GRGIC, Jozo; SAUNDERS, Bryan
    Purpose: This study aimed to summarize and meta-analyze existing evidence regarding the influence of CYP1A2 genotypes on the acute effects of caffeine for exercise performance and to investigate the interaction between genotype, dosage, and timing of caffeine supplementation. Methods: Six databases were searched for studies determining the effect of caffeine (except mouth rinsing) on exercise performance between CYP1A2 genotypes. Three-level meta-analyses were performed using standardized mean differences (SMD; Hedge's g ) to determine the effect of caffeine on exercise outcomes within and between CYP1A2 genotypes (AA, AC, and CC). Meta-regressions were performed for dose, timing, and presence of reported conflict of interests (RCOI). A meta-analysis was also performed with placebo values to assess for imbalances between genotypes. Results: Thirteen studies, totaling 119 outcomes and 440 participants, were included (233 AA, 175 AC, ad 34 CC). Caffeine improved performance for AA (SMD = 0.30, 95% confidence interval [CI] = 0.21-0.39, P < 0.0001) and AC (SMD = 0.16, 95% CI = 0.06-0.25, P = 0.022) but worsened performance for CC (SMD = -0.22, 95% CI = -0.44 to -0.01, P < 0.0001). Dose affected only CC, with greater doses generating more positive SMD (CC-dose estimate: +0.19/1 mgkg -1 body mass, 95% CI = 0.04-0.33, P = 0.01). Timing influenced only CC, with better performance with later onset of exercise after supplementation (CC-timing estimate: +0.01/min, 95% CI = 0.00-0.02, P = 0.02). RCOI only affected SMD of CC (CC-RCOI estimate: -0.57, 95% CI = -1.02 to -0.12, P = 0.01). After excluding studies with RCOI, no influence of genotype was seen (all P >= 0.19). Small, nonsignificant differences were seen in placebo between genotypes (SMD AA vs CC: -0.13; AA vs AC: -0.12; AC vs CC: -0.05; all P >= 0.26). Conclusions: Caffeine improved performance for AA and AC but worsened performance for CC. Dose and timing moderated the efficacy of caffeine for CC only. Caution is advised because baseline differences and studies with RCOI could have influenced these results.
  • article 28 Citação(ões) na Scopus
    Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acid base regulation of skeletal muscle
    (2019) DOLAN, Eimear; SAUNDERS, Bryan; HARRIS, Roger Charles; BICUDO, Jose Eduardo Pereira Wilken; BISHOP, David John; SALE, Craig; GUALANO, Bruno
    Histidine containing dipeptides (HCDs: carnosine, anserine and balenine) have numerous therapeutic and ergogenic properties, but there is a lack of consensus on the mechanistic pathways through which they function. Potential roles include intracellular buffering, neutralisation of reactive species, and calcium regulation. Comparative investigations of the HCD content of various species provide unique insight into their most likely mechanisms of action. This review chronologically describes how the comparative physiology studies, conducted since the beginning of the 20th century, have shaped our understanding of the physiological roles of HCDs. The investigation of a wide range of physiologically distinct species indicates that those species with a strong reliance on non-oxidative forms of energy production are abundant in HCDs. These include: whales who experience long periods of hypoxia while diving; racehorses and greyhound dogs who have highly developed sprint abilities, and chickens and turkeys whose limited capacity for flight is largely fuelled by their white, glycolytic, muscle. Additionally, a higher HCD content in the Type 2 muscle fibres of various species (which have greater capacity for non-oxidative metabolism) was consistently observed. The pKa of the HCDs render them ideally suited to act as intracellular physicochemical buffers within the pH transit range of the skeletal muscle. As such, their abundance in species which show a greater reliance on non-oxidative forms of energy metabolism, and which experience regular challenges to acid-base homeostasis, provides strong evidence that intracellular proton buffering is an important function of the HCDs in skeletal muscle.
  • article 23 Citação(ões) na Scopus
    A Comparative Study of Hummingbirds and Chickens Provides Mechanistic Insight on the Histidine Containing Dipeptide Role in Skeletal Muscle Metabolism
    (2018) DOLAN, E.; SAUNDERS, B.; DANTAS, W. S.; MURAI, I. H.; ROSCHEL, H.; ARTIOLI, G. G.; HARRIS, R.; BICUDO, J. E. P. W.; SALE, C.; GUALANO, B.
    Histidine containing dipeptides (HCDs) have numerous ergogenic and therapeutic properties, but their primary role in skeletal muscle remains unclear. Potential functions include pH regulation, protection against reactive oxygen/nitrogen species, or Ca2+ regulation. In recognition of the challenge of isolating physiological processes in-vivo, we employed a comparative physiology approach to investigate the primary mechanism of HCD action in skeletal muscle. We selected two avian species (i.e., hummingbirds and chickens), who represented the extremes of the physiological processes in which HCDs are likely to function. Our findings indicate that HCDs are non-essential to the development of highly oxidative and contractile muscle, given their very low content in hummingbird skeletal tissue. In contrast, their abundance in the glycolytic chicken muscle, indicate that they are important in anaerobic bioenergetics as pH regulators. This evidence provides new insights on the HCD role in skeletal muscle, which could inform widespread interventions, from health to elite performance.
  • article 39 Citação(ões) na Scopus
    International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance
    (2021) GRGIC, Jozo; PEDISIC, Zeljko; SAUNDERS, Bryan; ARTIOLI, Guilherme G.; SCHOENFELD, Brad J.; MCKENNA, Michael J.; BISHOP, David J.; KREIDER, Richard B.; STOUT, Jeffrey R.; KALMAN, Douglas S.; ARENT, Shawn M.; VANDUSSELDORP, Trisha A.; LOPEZ, Hector L.; ZIEGENFUSS, Tim N.; BURKE, Louise M.; ANTONIO, Jose; CAMPBELL, Bill I.
    Based on a comprehensive review and critical analysis of the literature regarding the effects of sodium bicarbonate supplementation on exercise performance, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Supplementation with sodium bicarbonate (doses from 0.2 to 0.5 g/kg) improves performance in muscular endurance activities, various combat sports, including boxing, judo, karate, taekwondo, and wrestling, and in high-intensity cycling, running, swimming, and rowing. The ergogenic effects of sodium bicarbonate are mostly established for exercise tasks of high-intensity that last between 30 s and 12 min. 2. Sodium bicarbonate improves performance in single- and multiple-bout exercise. 3. Sodium bicarbonate improves exercise performance in both men and women. 4. For single-dose supplementation protocols, 0.2 g/kg of sodium bicarbonate seems to be the minimum dose required to experience improvements in exercise performance. The optimal dose of sodium bicarbonate dose for ergogenic effects seems to be 0.3 g/kg. Higher doses (e.g., 0.4 or 0.5 g/kg) may not be required in single-dose supplementation protocols, because they do not provide additional benefits (compared with 0.3 g/kg) and are associated with a higher incidence and severity of adverse side-effects. 5. For single-dose supplementation protocols, the recommended timing of sodium bicarbonate ingestion is between 60 and 180 min before exercise or competition. 6. Multiple-day protocols of sodium bicarbonate supplementation can be effective in improving exercise performance. The duration of these protocols is generally between 3 and 7 days before the exercise test, and a total sodium bicarbonate dose of 0.4 or 0.5 g/kg per day produces ergogenic effects. The total daily dose is commonly divided into smaller doses, ingested at multiple points throughout the day (e.g., 0.1 to 0.2 g/kg of sodium bicarbonate consumed at breakfast, lunch, and dinner). The benefit of multiple-day protocols is that they could help reduce the risk of sodium bicarbonate-induced side-effects on the day of competition. 7. Long-term use of sodium bicarbonate (e.g., before every exercise training session) may enhance training adaptations, such as increased time to fatigue and power output. 8. The most common side-effects of sodium bicarbonate supplementation are bloating, nausea, vomiting, and abdominal pain. The incidence and severity of side-effects vary between and within individuals, but it is generally low. Nonetheless, these side-effects following sodium bicarbonate supplementation may negatively impact exercise performance. Ingesting sodium bicarbonate (i) in smaller doses (e.g., 0.2 g/kg or 0.3 g/kg), (ii) around 180 min before exercise or adjusting the timing according to individual responses to side-effects, (iii) alongside a high-carbohydrate meal, and (iv) in enteric-coated capsules are possible strategies to minimize the likelihood and severity of these side-effects. 9. Combining sodium bicarbonate with creatine or beta-alanine may produce additive effects on exercise performance. It is unclear whether combining sodium bicarbonate with caffeine or nitrates produces additive benefits. 10. Sodium bicarbonate improves exercise performance primarily due to a range of its physiological effects. Still, a portion of the ergogenic effect of sodium bicarbonate seems to be placebo-driven.
  • article 1 Citação(ões) na Scopus
    Use of Buffers in Specific Contexts: Highly Trained Female Athletes, Extreme Environments and Combined Buffering Agents-A Narrative Review
    (2023) CARR, Amelia J.; MCKAY, Alannah K. A.; BURKE, Louise M.; SMITH, Ella S.; URWIN, Charles S.; CONVIT, Lilia; JARDINE, William T.; KELLY, Monica K.; SAUNDERS, Bryan
    This narrative review evaluated the evidence for buffering agents (sodium bicarbonate, sodium citrate and beta-alanine), with specific consideration of three discrete scenarios: female athletes, extreme environments and combined buffering agents. Studies were screened according to exclusion and inclusion criteria and were analysed on three levels: (1) moderating variables (supplement dose and timing, and exercise test duration and intensity), (2) design factors (e.g., use of crossover or matched group study design, familiarisation trials) and (3) athlete-specific factors (recruitment of highly trained participants, buffering capacity and reported performance improvements). Only 19% of the included studies for the three buffering agents reported a performance benefit, and only 10% recruited highly trained athletes. This low transferability of research findings to athletes' real-world practices may be due to factors including the small number of sodium citrate studies in females (n = 2), no studies controlling for the menstrual cycle (MC) or menstrual status using methods described in recently established frameworks, and the limited number of beta-alanine studies using performance tests replicating real-world performance efforts (n = 3). We recommend further research into buffering agents in highly trained female athletes that control or account for the MC, studies that replicate the demands of athletes' heat and altitude camps, and investigations of highly trained athletes' use of combined buffering agents. In a practical context, we recommend developing evidence-based buffering protocols for individual athletes which feature co-supplementation with other evidence-based products, reduce the likelihood of side-effects, and optimise key moderating factors: supplement dose and timing, and exercise duration and intensity.
  • article 0 Citação(ões) na Scopus
    Effect of menstrual cycle and contraceptive pill phase on aspects of exercise physiology and athletic performance in female athletes: protocol for the Feminae international multisite innovative project
    (2023) SALE, Kirsty J. Elliott; FLOOD, Tessa R.; ARENT, Shawn M.; DOLAN, Eimear; SAUNDERS, Bryan; HANSEN, Mette; IHALAINEN, Johanna K.; MIKKONEN, Ritva S.; MINAHAN, Clare; THORNTON, Jane S.; ACKERMAN, Kathryn E.; LEBRUN, Constance M.; SALE, Craig; STELLINGWERFF, Trent; SWINTON, Paul A.; HACKNEY, Anthony C.; Feminae consortium
    The idiom 'more high-quality research is needed' has become the slogan for sport and exercise physiology-based research in female athletes. However, in most instances, it is challenging to address this gap of high-quality research in elite female athletes at a single study site due to challenges in recruiting enough participants with numerous menstrual cycle and contraceptive pill permutations. Accordingly, we have assembled an international multisite team to undertake an innovative project for female athletes, which investigates the effects of changes in endogenous and exogenous oestrogen and progesterone/progestins across the menstrual cycle and in response to second-generation combined monophasic contraceptive pill use, on aspects of exercise physiology and athletic performance. This project will employ the current gold-standard methodologies in this area, resulting in an adequately powered dataset. This protocol paper describes the consortium-based approach we will undertake during this study.