SORAHIA DOMENICE

(Fonte: Lattes)
Índice h a partir de 2011
22
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina - Médico
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 34
  • conferenceObject
    Inherited Digenic Missense Variants in FGFR2 and MAP3K1 Genes in Two Siblings with 46,XY Partial Gonadal Dysgenesis
    (2014) MACHADO, Aline Zamboni; NISHI, Mirian Yumie; COSTA, Elaine Maria Frade; MENDONCA, Berenice B.; DOMENICE, Sorahia
  • article 75 Citação(ões) na Scopus
    46,XY disorder of sex development (DSD) due to 17 beta-hydroxysteroid dehydrogenase type 3 deficiency
    (2017) MENDONCA, Berenice B.; GOMES, Nathalia Lisboa; COSTA, Elaine M. F.; INACIO, Marlene; MARTIN, Regina M.; NISHI, Mirian Y.; CARVALHO, Filomena Marino; TIBOR, Francisco Denes; DOMENICE, Sorahia
    17 beta-hydroxysteroid dehydrogenase 3 deficiency consists of a defect in the last phase of steroidogenesis, in which androstenedione is converted into testosterone and estrone into estradiol. External genitalia range from female-like to atypical genitalia and most affected males are raised as females. Virilization in subjects with 17 beta-HSD3 deficiency occurs at the time of puberty and several of them change to male social sex. In male social sex patients, testes can be safely maintained, as long as they are positioned inside the scrotum The phenotype of 46,XY DSD due to 17 beta-HSD3 deficiency is extremely variable and clinically indistinguishable from other causes of 46,XY DSD such as partial androgen insensitivity syndrome and 5 alpha-reductase 2 deficiency. Laboratory diagnosis is based on a low testosterone/androstenedione ratio due to high serum levels of androstenedione and low levels of testosterone. The disorder is caused by a homozygous or compound heterozygous mutations in the HSD17B3 gene that encodes the 17 beta-HSD3 isoenzyme leading to an impairment of the conversion of 17-keto into 17-hydroxysteroids. Molecular genetic testing confirms the diagnosis and provides the orientation for genetic counseling. Our proposal in this article is to review-the previously reported cases of 17 beta-HSD3 deficiency adding our own cases. (C) 2016 Published by Elsevier Ltd.
  • article 26 Citação(ões) na Scopus
    Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency
    (2020) FRANCA, Monica M.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; SANTOS, Mariza G.; NISHI, Mirian Y.; DOMENICE, Sorahia; MORAES, Daniela R.; COSTALONGA, Everlayny F.; MACIEL, Gustavo A. R.; MACIEL-GUERRA, Andrea T.; GUERRA-JUNIOR, Gil; MENDONCA, Berenice B.
    Primary ovarian insufficiency (POI) is a heterogeneous disorder associated with several genes. The majority of cases are still unsolved. Our aim was to identify the molecular diagnosis of a Brazilian cohort with POI. Genetic analysis was performed using a customized panel of targeted massively parallel sequencing (TMPS) and the candidate variants were confirmed by Sanger sequencing. Additional copy number variation (CNV) analysis of TMPS samples was performed by CONTRA. Fifty women with POI (29 primary amenorrhea and 21 secondary amenorrhea) of unknown molecular diagnosis were included in this study, which was conducted in a tertiary referral center of clinical endocrinology. A genetic defect was obtained in 70% women with POI using the customized TMPS panel. Twenty-four pathogenic variants and two CNVs were found in 48% of POI women. Of these variants, 16 genes were identified as BMP8B, CPEB1, INSL3, MCM9, GDF9, UBR2, ATM, STAG3, BMP15, BMPR2, DAZL, PRDM1, FSHR, EIF4ENIF1, NOBOX, and GATA4. Moreover, a microdeletion and microduplication in the CPEB1 and SYCE1 genes, respectively, were also identified in two distinct patients. The genetic analysis of eleven patients was classified as variants of uncertain clinical significance whereas this group of patients harbored at least two variants in different genes. Thirteen patients had benign or no rare variants, and therefore the genetic etiology remained unclear. In conclusion, next-generation sequencing (NGS) is a highly effective approach to identify the genetic diagnoses of heterogenous disorders, such as POI. A molecular etiology allowed us to improve the disease knowledge, guide decisions about prevention or treatment, and allow familial counseling avoiding future comorbidities.
  • article 13 Citação(ões) na Scopus
    Partial androgen insensitivity syndrome due to somatic mosaicism of the androgen receptor
    (2018) BATISTA, Rafael Loch; RODRIGUES, Andresa De Santi; MACHADO, Aline Zamboni; NISHI, Mirian Yumie; CUNHA, Flavia Siqueira; SILVA, Rosana Barbosa; COSTA, Elaine M. F.; MENDONCA, Berenice B.; DOMENICE, Sorahia
    Background: Androgen insensitivity syndrome (AIS) is the most frequent etiology of 46, XY disorders of sex development (DSDs), and it is an X-linked disorder caused by mutations in the androgen receptor (AR) gene. AIS patients present a broad phenotypic spectrum and individuals with a partial phenotype present with different degrees of undervirilized external genitalia. There are more than 500 different AR gene allelic variants reported to be linked to AIS, but the presence of somatic mosaicisms has been rarely identified. In the presence of a wild-type AR gene, a significant degree of spontaneous virilization at puberty can be observed, and it could influence the gender assignment, genetic counseling and the clinical and psychological management of these patients and the psychosexual outcomes of these patients are not known. Case presentation: In this study, we report two patients with AR allelic variants in heterozygous (c.382G>T and c.1769-1G>C) causing a partial AIS (PAIS) phenotype. The first patient was raised as female and she had undergone a gonadectomy at puberty. In both patients there was congruency between gender of rearing and gender identity and gender role. Conclusions: Somatic mosaicism is rare in AIS and nonsense AR variant allelic can cause partial AIS phenotype in this situation. Despite the risk of virilization and prenatal androgen exposure, the gender identity and gender role was concordant with sex of rearing in both cases. A better testosterone response can be expected in male individuals and this should be considered in the clinical management.
  • article 71 Citação(ões) na Scopus
    Management of 46,XY Differences/Disorders of Sex Development (DSD) Throughout Life
    (2019) WISNIEWSKI, Amy B.; BATISTA, Rafael L.; COSTA, Elaine M. F.; FINLAYSON, Courtney; SIRCILI, Maria Helena Palma; DENES, Francisco Tibor; DOMENICE, Sorahia; MENDONCA, Berenice B.
    Differences/disorders of sex development (DSD) are a heterogeneous group of congenital conditions that result in discordance between an individual's sex chromosomes, gonads, and/or anatomic sex. Advances in the clinical care of patients and families affected by 46,XY DSD have been achieved since publication of the original Consensusmeeting in 2006. The aims of this paper are to review what is known about morbidity and mortality, diagnostic tools and timing, sex of rearing, endocrine and surgical treatment, fertility and sexual function, and quality of life in people with 46,XY DSD. The role for interdisciplinary health care teams, importance of establishing a molecular diagnosis, and need for research collaborations using patient registries to better understand long-term outcomes of specific medical and surgical interventions are acknowledged and accepted. Topics that require further study include prevalence and incidence, understanding morbidity and mortality as these relate to specific etiologies underlying 46,XY DSD, appropriate and optimal options for genitoplasty, long-term quality of life, sexual function, involvement with intimate partners, and optimizing fertility potential.
  • article 34 Citação(ões) na Scopus
    Homozygous Inactivating Mutation in NANOS3 in Two Sisters with Primary Ovarian Insufficiency
    (2014) SANTOS, Mariza G.; MACHADO, Aline Z.; MARTINS, Conceicao N.; DOMENICE, Sorahia; COSTA, Elaine M. F.; NISHI, Mirian Y.; FERRAZ-DE-SOUZA, Bruno; JORGE, Soraia A. C.; PEREIRA, Carlos A.; SOARDI, Fernanda C.; MELLO, Maricilda P. de; MACIEL-GUERRA, Andrea T.; GUERRA-JUNIOR, Gil; MENDONCA, Berenice B.
    Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI) is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lysmutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs) apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.
  • article 11 Citação(ões) na Scopus
    46,XY DSD due to 17 beta-HSD3 Deficiency and 5 alpha-Reductase Type 2 Deficiency
    (2011) INACIO, Marlene; SIRCILI, Maria Helena P.; BRITO, Vinicius N.; DOMENICE, Sorahia; OLIVEIRA-JUNIOR, Ari Alves; ARNHOLD, Ivo J. P.; TIBOR, Francisco D.; COSTA, Elaine M. F.; MENDONCA, Berenice B.
  • conferenceObject
    GnRH Analogue's Use in the Diagnostic Approach of Patients with Suspected 46,XX Ovotesticular Disorders of Sex Development
    (2014) PELAES, Tatiana S.; SANTANA, Nathalie Oliveira; SILVA, Rosana Barbosa; COSTA, Elaine Maria Frade; SIRCILI, Maria Helena Palma; CUNHA, Flavia Siqueira; MENDONCA, Berenice B.; DOMENICE, Sorahia
  • conferenceObject
    Gonadal Tumor Risk, Bone Mineral Density, and Genetics, Clinical, Hormonal, and Psychosexual Aspects of a Large Androgen Insensitivity Syndrome Cohort
    (2021) BATISTA, Rafael Loch; RAMOS, Raquel Martinez; NISHI, Miriam; DALLAGO, Renata; ELIAS, Felipe; RODRIGUES, Andresa di Santi; DOMENICE, Sorahia; MENDONCA, Berenice B.
  • article 69 Citação(ões) na Scopus
    Disorders of sex development: effect of molecular diagnostics
    (2015) ACHERMANN, John C.; DOMENICE, Sorahia; BACHEGA, Tania A. S. S.; NISHI, Mirian Y.; MENDONCA, Berenice B.
    Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs.