ANDREA SCHMITT

Índice h a partir de 2011
31
Projetos de Pesquisa
Unidades Organizacionais
LIM/27 - Laboratório de Neurociências, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • article 195 Citação(ões) na Scopus
    Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders
    (2013) HASHIMOTO, Kenji; MALCHOW, Berend; FALKAI, Peter; SCHMITT, Andrea
    Severe psychiatric disorders such as schizophrenia are related to cognitive and negative symptoms, which often are resistant to current treatment approaches. The glutamatergic system has been implicated in the pathophysiology of schizophrenia and affective disorders. A key component is the dysfunction of the glutamatergic N-methyl-d-aspartate (NMDA) receptor. Substances regulating activation/inhibition of the NMDA receptor have been investigated in schizophrenia and major depression and are promising in therapeutic approaches of negative symptoms, cognition, and mood. In schizophrenia, add-on treatments with glycine, d-serine, d-alanine, d-cycloserine, d-amino acid oxidase inhibitors, glycine transporter-1 (GlyT-1) inhibitors (e.g., sarcosine, bitopertin) and agonists (e.g., LY2140023) or positive allosteric modulator (e.g., ADX71149) of group II metabotropic glutamate receptors (mGluRs) have been studied. In major depression, the NMDA receptor antagonists (e.g., ketamine, AZD6765), GluN2B subtype antagonists (e.g., traxoprodil, MK-0657), and partial agonists (e.g., d-cycloserine, GLYX-13) at the glycine site of the NMDA receptor have been proven to be effective in animal studies and first clinical trials. In addition, clinical studies of mGluR2/3 antagonist BCI-838 (a prodrug of BCI-632 (MGS0039)), mGluR2/3-negative allosteric modulators (NMAs) (e.g., RO499819, RO4432717), and mGluR5 NAMs (e.g., AZD2066, RO4917523) are in progress. Future investigations should include effects on brain structure and activation to elucidate neural mechanisms underlying efficacy of these drugs.
  • article 39 Citação(ões) na Scopus
    Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia
    (2019) MAURUS, Isabel; HASAN, Alkomiet; ROEH, Astrid; TAKAHASHI, Shun; RAUCHMANN, Boris; KEESER, Daniel; MALCHOW, Berend; SCHMITT, Andrea; FALKAI, Peter
    Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus-pituitary-adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.
  • article 76 Citação(ões) na Scopus
    The effects of physical exercise in schizophrenia and affective disorders
    (2013) MALCHOW, Berend; REICH-ERKELENZ, Daniela; OERTEL-KNOECHEL, Viola; KELLER, Katriona; HASAN, Alkomiet; SCHMITT, Andrea; SCHEEWE, Thomas W.; CAHN, Wiepke; KAHN, Rene S.; FALKAI, Peter
    Affective and non-affective psychoses are severe and frequent psychiatric disorders. Amongst others, they not only have a profound impact on affected individuals through their symptomatology, but also regarding cognition, brain structure and function. Cognitive impairment influences patients' quality of life as well as their ability to work and being employed. While exercise therapy has been implemented in the treatment of psychiatric conditions since the days of Kraepelin and Bleuler, the underlying mechanisms have never been systematically studied. Since the early 1990s, studies emerged examining the effect of physical exercise in animal models, revealing stimulation of neurogenesis, synaptogenesis and neurotransmission. Based on that body of work, clinical studies have been carried out in both healthy humans and in patient populations. These studies differ with regard to homogenous study samples, sample size, type and duration of exercise, outcome variables and measurement techniques. Based on their review, we draw conclusions regarding recommendations for future research strategies showing that modern therapeutic approaches should include physical exercise as part of a multimodal intervention programme to improve psychopathology and cognitive symptoms in schizophrenia and affective disorders.
  • article 19 Citação(ões) na Scopus
    Aerobic exercise in severe mental illness: requirements from the perspective of sports medicine
    (2022) FALKAI, Peter; SCHMITT, Andrea; ROSENBEIGER, Christian P.; MAURUS, Isabel; HATTENKOFER, Lisa; HASAN, Alkomiet; MALCHOW, Berend; HEIM-OHMAYER, Pascale; HALLE, Martin; HEITKAMP, Melanie
    Major depression, bipolar disorder, and schizophrenia are severe mental illnesses. Despite receiving psychopharmacological and psychosocial treatments, about half of patients develop a chronic course with residual cognitive and negative symptoms and have a high risk for cardiovascular disease and reduced life expectancy. Therefore, add-on innovative treatment approaches are needed to improve outcome. Aerobic exercise interventions have been shown to improve global functioning, cognition, and negative and depressive symptoms in these patients. The basic mechanism of these exercise-related changes has been reported to be improved brain plasticity, e.g., increased volume of disease-related brain regions such as the hippocampus. The optimal type, duration, and frequency of exercise have not yet been determined and need to be addressed in supervised physical exercise studies. Because of the low physical activity levels, lack of drive related to negative and depressive symptoms, and high prevalence of cardiovascular comorbidities in patients with severe mental illness, besides aiming to improve symptoms of mental illness, exercise interventions should also aim to increase cardiorespiratory fitness, which they should comprehensively assess by direct measurements of maximal oxygen uptake. Based on the recommendations for developing cardiorespiratory fitness by the American College of Sports Medicine, 150 min moderate-intensity training per week or vigorous-intensity exercise training for 75 min per week are appropriate. Most studies have had relatively short intervention periods, so future studies should focus on long-term adherence to exercise by implementing motivational strategies supported by telemedicine and by identifying and targeting typical barriers to exercise in this patient population.
  • article 195 Citação(ões) na Scopus
    Schizophrenia as a disorder of disconnectivity
    (2011) SCHMITT, Andrea; HASAN, Alkomiet; GRUBER, Oliver; FALKAI, Peter
    Schizophrenia is considered as a neurodevelopmental disorder with genetic and environmental factors playing a role. Animal models show that developmental hippocampal lesions are causing disconnectivity of the prefrontal cortex. Magnetic resonance imaging and postmortem investigations revealed deficits in the temporoprefrontal neuronal circuit. Decreased oligodendrocyte numbers and expression of oligodendrocyte genes and synaptic proteins may contribute to disturbances of micro- and macro-circuitry in the pathophysiology of the disease. Functional connectivity between cortical areas can be investigated with high temporal resolution using transcranial magnetic stimulation (TMS), electroencephalography (EEG), and magnetoencephalography (MEG). In this review, disconnectivity between different cortical areas in schizophrenia patients is described. The specificity and the neurobiological origin of these connectivity deficits and the relation to the symptom complex of schizophrenia and the glutamatergic and GABAergic system are discussed.