ANDREA SCHMITT

Índice h a partir de 2011
31
Projetos de Pesquisa
Unidades Organizacionais
LIM/27 - Laboratório de Neurociências, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 1 Citação(ões) na Scopus
    Failed regeneration and inflammation in schizophrenia: two sides of the same coin?
    (2022) FALKAI, Peter; SCHMITT, Andrea
    More than 100 years after its conceptual definition as 'Dementia Praecox' by Emil Kraepelin, which was changed to schizophrenia by Eugen Bleuler, this is still a serious and debilitating psychiatric illness. The neurodevelopmental hypothesis of schizophrenia, introduced more than 30 years ago, states that schizophrenia is a consequence of failed neurodevelopmental processes leading to a dysfunctional neuronal network forming the basis for a psychosis proneness. Subsequently, significant research efforts were made to prove the neurodevelopmental or the neurodegenerative perspective. This review summarizes key arguments speaking for or against the two hypotheses leading to a concept with both aspects position side by side.
  • article 12 Citação(ões) na Scopus
    Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors
    (2023) SCHMITT, Andrea; FALKAI, Peter; PAPIOL, Sergi
    Since more than 3 decades, schizophrenia (SZ) has been regarded as a neurodevelopmental disorder. The neurodevelopmental hypothesis proposes that SZ is associated with genetic and environmental risk factors, which influence connectivity in neuronal circuits during vulnerable developmental periods. We carried out a non-systematic review of genetic/environmental factors that increase SZ risk in light of its neurodevelopmental hypothesis. We also reviewed the potential impact of SZ-related environmental and genetic risk factors on grey and white matter pathology and brain function based on magnetic resonance imaging and post-mortem studies. Finally, we reviewed studies that have used patient-derived neuronal models to gain knowledge of the role of genetic and environmental factors in early developmental stages. Taken together, these studies indicate that a variety of environmental factors may interact with genetic risk factors during the pre- or postnatal period and/or during adolescence to induce symptoms of SZ in early adulthood. These risk factors induce disturbances of macro- and microconnectivity in brain regions involving the prefrontal, temporal and parietal cortices and the hippocampus. On the molecular and cellular level, a disturbed synaptic plasticity, loss of oligodendrocytes and impaired myelination have been shown in brain regions of SZ patients. These cellular/histological phenotypes are related to environmental risk factors such as obstetric complications, maternal infections and childhood trauma and genetic risk factors identified in recent genome-wide association studies. SZ-related genetic risk may contribute to active processes interfering with synaptic plasticity in the adult brain. Advances in stem cell technologies are providing promising mechanistic insights into how SZ risk factors impact the developing brain. Further research is needed to understand the timing of the different complex biological processes taking place as a result of the interplay between genetic and environmental factors.