RAUL CAVALCANTE MARANHAO

(Fonte: Lattes)
Índice h a partir de 2011
26
Projetos de Pesquisa
Unidades Organizacionais
FBC, FCF - Docente
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina - Médico
LIM/31 - Laboratório de Genética e Hematologia Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 1 Citação(ões) na Scopus
    Tissue Uptake Mechanisms Involved in the Clearance of Non-Protein Nanoparticles that Mimic LDL Composition: A Study with Knockout and Transgenic Mice
    (2017) DAMINELLI, Elaine N.; FOTAKIS, Panagiotis; MESQUITA, Carlos H.; MARANHAO, Raul C.; ZANNIS, Vassilis I.
    Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A-I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to investigate in knockout (KO) and transgenic mice the plasma clearance and tissue uptake of LDE labeled with H-3-cholesteryl ether. LDE clearance was lower in LDLR KO and apoE KO mice than in wild type (WT) mice (p < 0.05). However, infusion of human apoE3 into the apoE KO mice increased LDE clearance. LDE clearance was higher in apoA-I KO than in WT. In apoA-I transgenic mice, LDE clearance was lower than in apoA-I KO and than in apoA-I KO infusion with human HDL. Infusion of human HDL into the apoA-I KO mice resulted in higher LDE clearance than in the apoA-I transgenic mice (p < 0.05). In apoA-I KO and apoA-I KO infused human HDL, the liver uptake was greater than in WT animals and apoA-I transgenic animals (p < 0.05). LDE clearance was lower in apoE/A-I KO than in WT. Infusion of human HDL increased LDE clearance in those double KO mice. No difference among the groups in LDE uptake by the tissues occurred. In conclusion, results support LDLR and apoE as the key players for LDE clearance, apoA-I also influences those processes.
  • article 42 Citação(ões) na Scopus
    Nanotechnology for Medical and Surgical Glaucoma Therapy-A Review
    (2020) OCCHIUTTO, Marcelo Luis; MARANHAO, Raul C.; COSTA, Vital Paulino; KONSTAS, Anastasios G.
    Glaucoma is the second leading cause of blindness worldwide. Even though significant advances have been made in its management, currently available antiglaucoma therapies suffer from considerable drawbacks. Typically, the success and efficacy of glaucoma medications are undermined by their limited bioavailability to target tissues and the inadequate adherence demonstrated by patients with glaucoma. The latter is due to a gradual decrease in tolerability of lifelong topical therapies and the significant burden to patients of prescribed stepwise antiglaucoma regimens with frequent dosing which impact quality of life. On the other hand, glaucoma surgery is restricted by the inability of antifibrotic agents to efficiently control the wound healing process without causing severe collateral damage and long-term complications. Evolution of the treatment paradigm for patients with glaucoma will ideally include prevention of retinal ganglion cell degeneration by the successful delivery of neurotrophic factors, anti-inflammatory drugs, and gene therapies. Nanotechnology-based treatments may surpass the limitations of currently available glaucoma therapies through optimized targeted drug delivery, increased bioavailability, and controlled release. This review addresses the recent advances in glaucoma treatment strategies employing nanotechnology, including medical and surgical management, neuroregeneration, and neuroprotection.