RUAN FELIPE VIEIRA MEDRANO

(Fonte: Lattes)
Índice h a partir de 2011
8
Projetos de Pesquisa
Unidades Organizacionais
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • conferenceObject
    Use of p19Arf/interferon-beta immunotherapy in association with chemotherapy permits reduced drug dosage and avoids cardiotoxicity associated with doxorubicin
    (2019) STRAUSS, Bryan E.; MEDRANO, Ruan F. V.; TAMURA, Rodrigo; MENDONCA, Samir A.; FEITOSA, Valker A.; DARIOLLI, Rafael; SALLES, Thiago A.; HUNGER, Aline; CATANI, Joao P. P.; RODRIGUES, Elaine G.
  • conferenceObject
    Potentiation of doxorubicin low-dose efficacy through its association with p19Arf/Interferon-beta immunotherapy: Combining two immunogenic cell death inducers for the treatment of cancer.
    (2018) SR., Ruan F. V. Medrano; SR., Samir A. Mendonca; SR., Aline H. Ribeiro; SR., Joao P. P. Catani; SR., Valker A. Feitosa; SR., Elaine G. Rodrigues; SR., Bryan E. Strauss
  • article 123 Citação(ões) na Scopus
    Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy
    (2017) MEDRANO, Ruan F. V.; HUNGER, Aline; MENDONCA, Samir Andrade; BARBUTO, Jose Alexandre M.; STRAUSS, Bryan E.
    During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-alpha and IFN-beta, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-alpha/beta share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-alpha/beta, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-alpha/beta has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-alpha/beta have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied.
  • article 5 Citação(ões) na Scopus
    Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer
    (2018) STRAUSS, Bryan E.; SILVA, Gissele Rolemberg Oliveira; VIEIRA, Igor de Luna; CERQUEIRA, Otto Luiz Dutra; VALLE, Paulo Roberto Del; MEDRANO, Ruan Felipe Vieira; MENDONCA, Samir Andrade
    While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-beta cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.