JOAO BATISTA BORGES SOBRINHO DORINI

(Fonte: Lattes)
Índice h a partir de 2011
15
Projetos de Pesquisa
Unidades Organizacionais
LIM/09 - Laboratório de Pneumologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • bookPart 1 Citação(ões) na Scopus
    Validation of bohr dead space measured by volumetric capnography
    (2012) TUSMAN, G.; SUAREZ-SIPMANN, F.; BORGES, J. B.; HEDENSTIERNA, G.; BOHM, S. H.
    Purpose: Bohr’s dead space (VDBohr) is commonly calculated using end-tidal CO2 instead of the true alveolar partial pressure of CO2 (PACO2). The aim of this work was to validate VDBohr using PACO2 derived from volumetric capnography (VC) against VDBohr with PACO2 values obtained from the standard alveolar air formula. Methods: Expired gases of seven lung-lavaged pigs were analyzed at different lung conditions using mainstream VC and multiple inert gas elimination technique (MIGET). Paco2 was determined by VC as the midpoint of the slope of phase III of the capnogram, while mean expired partial pressure of CO2 (PeCO2) was calculated as the mean expired fraction of CO2 times the barometric minus the water vapor pressure. Miget estimated expired CO2 output (VCO2) and PeCO2 by its V/Q algorithms. Then, PACO2 was obtained applying the alveolar air formula (PACO2 = VCO2/alveolar ventilation). Results: We found close linear correlations between the two methods for calculating both PACO2 (r = 0.99) and VDBohr (r = 0.96), respectively (both p\0.0001). Mean PACO2 from VC was very similar to the one obtained by MIGET with a mean bias of -0.10 mmHg and limits of agreement between -2.18 and 1.98 mmHg. Mean VDBohr from VC was close to the value obtained by MIGET with a mean bias of 0.010 ml and limits of agreement between -0.044 and 0.064 ml. Conclusions: VDBohr can be calculated with accuracy using volumetric capnography. © Springer-Verlag Berlin Heidelberg 2006, 2009, 2012.
  • article 14 Citação(ões) na Scopus
    Hyperoxia affects the regional pulmonary ventilation/perfusion ratio: an electrical impedance tomography study
    (2014) LI, Y.; TESSELAAR, E.; BORGES, J. B.; BOHM, S. H.; SJOBERG, F.; JANEROT-SJOBERG, B.
    Background The way in which hyperoxia affects pulmonary ventilation and perfusion is not fully understood. We investigated how an increase in oxygen partial pressure in healthy young volunteers affects pulmonary ventilation and perfusion measured by thoracic electrical impedance tomography (EIT). Methods Twelve semi-supine healthy male volunteers aged 21-36 years were studied while breathing room air and air-oxygen mixtures (FiO2) that resulted in predetermined transcutaneous oxygen partial pressures (tcPO2) of 20, 40 and 60kPa. The magnitude of ventilation (Zv) and perfusion (ZQ)-related changes in cyclic impedance variations, were determined using an EIT prototype equipped with 32 electrodes around the thorax. Regional changes in ventral and dorsal right lung ventilation (V) and perfusion (Q) were estimated, and V/Q ratios calculated. Results There were no significant changes in Zv with increasing tcPO2 levels. ZQ in the dorsal lung increased with increasing tcPO2 (P=0.01), whereas no such change was seen in the ventral lung. There was a simultaneous decrease in V/Q ratio in the dorsal region during hyperoxia (P=0.04). Two subjects did not reach a tcPO2 of 60kPa despite breathing 100% oxygen. Conclusion These results indicate that breathing increased concentrations of oxygen induces pulmonary vasodilatation in the dorsal lung even at small increases in FiO2. Ventilation remains unchanged. Local mismatch of ventilation and perfusion occurs in young healthy men, and the change in ventilation/perfusion ratio can be determined non-invasively by EIT.
  • article 16 Citação(ões) na Scopus
    Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry-a comparison with reference gas chromatography
    (2013) KRETZSCHMAR, Moritz; SCHILLING, Thomas; VOGT, Andreas; ROTHEN, Hans Ulrich; BORGES, Joao Batista; HACHENBERG, Thomas; LARSSON, Anders; BAUMGARDNER, James E.; HEDENSTIERNA, Goran
    The mismatching of alveolar ventilation and perfusion (V-A/Q) is the major determinant of impaired gas exchange. The gold standard for measuring V-A/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal V-A/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed V-A/Q distributions between GC and MMIMS, and predicted Pa-O2 from both methods compared well with measured Pa-O2. V-A/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate V-A/Q distributions. In conclusion, MMIMS enables faster measurement of V-A/Q, is less demanding than GC, and produces comparable results.
  • bookPart 7 Citação(ões) na Scopus
    Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography
    (2012) COSTA, E. L. V.; BORGES, J. B.; MELO, A.; SUAREZ-SIPMANN, F.; TOUFEN, C. Jr.; BOHM, S. H.; AMATO, M. B. P.
    Objective: To present a novel algorithm for estimating recruitable alveolar collapse and hyperdistension based on electrical impedance tomography (EIT) during a decremental positive end-expiratory pressure (PEEP) titration. Design: Technical note with illustrative case reports. Setting: Respiratory intensive care unit. Patient: Patients with acute respiratory distress syndrome. Interventions: Lung recruitment and PEEP titration maneuver. Measurements and results: Simultaneous acquisition of EIT and X-ray computerized tomography (CT) data. We found good agreement (in terms of amount and spatial location) between the collapse estimated by EIT and CT for all levels of PEEP. The optimal PEEP values detected by EIT for patients 1 and 2 (keeping lung collapse \10%) were 19 and 17 cmH2O, respectively. Although pointing to the same non1dependent lung regions, EIT estimates of hyperdistension represent the functional deterioration of lung units, instead of their anatomical changes, and could not be compared directly with static CT estimates for hyperinflation. Conclusions: We described an EIT-based method for estimating recruitable alveolar collapse at the bedside, pointing out its regional distribution. Additionally, we proposed a measure of lung hyperdistension based on regional lung mechanics. © Springer-Verlag Berlin Heidelberg 2006, 2009, 2012.
  • article 51 Citação(ões) na Scopus
    Capnography reflects ventilation/perfusion distribution in a model of acute lung injury
    (2011) TUSMAN, G.; SUAREZ-SIPMANN, F.; BOHM, S. H.; BORGES, J. B.; HEDENSTIERNA, G.
    Background Changes in the shape of the capnogram may reflect changes in lung physiology. We studied the effect of different ventilation/perfusion ratios (V/Q) induced by positive end-expiratory pressures (PEEP) and lung recruitment on phase III slope (S-III) of volumetric capnograms. Methods Seven lung-lavaged pigs received volume control ventilation at tidal volumes of 6 ml/kg. After a lung recruitment maneuver, open-lung PEEP (OL-PEEP) was defined at 2 cmH(2)O above the PEEP at the onset of lung collapse as identified by the maximum respiratory compliance during a decremental PEEP trial. Thereafter, six distinct PEEP levels either at OL-PEEP, 4 cmH(2)O above or below this level were applied in a random order, either with or without a prior lung recruitment maneuver. Ventilation-perfusion distribution (using multiple inert gas elimination technique), hemodynamics, blood gases and volumetric capnography data were recorded at the end of each condition (minute 40). Results S-III showed the lowest value whenever lung recruitment and OL-PEEP were jointly applied and was associated with the lowest dispersion of ventilation and perfusion (Disp(R-E)), the lowest ratio of alveolar dead space to alveolar tidal volume (VDalv/VTalv) and the lowest difference between arterial and end-tidal pCO(2) (Pa-ETCO2). Spearman's rank correlations between S-III and Disp(R-E) showed a =0.85 with 95% CI for (Fisher's Z-transformation) of 0.74-0.91, P < 0.0001. Conclusion In this experimental model of lung injury, changes in the phase III slope of the capnograms were directly correlated with the degree of ventilation/perfusion dispersion.
  • article 140 Citação(ões) na Scopus
    Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse
    (2012) BORGES, Joao Batista; SUAREZ-SIPMANN, Fernando; BOHM, Stephan H.; TUSMAN, Gerardo; MELO, Alexandre; MARIPUU, Enn; SANDSTROM, Mattias; PARK, Marcelo; COSTA, Eduardo L. V.; HEDENSTIERNA, Goran; AMATO, Marcelo
    Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.