LUCAS RIBEIRO XAVIER CORTELLA

Índice h a partir de 2011
2
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/65, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • conferenceObject 0 Citação(ões) na Scopus
    Surface Topography Obtained with High Throughput Technology for hiPSC-Derived Cardiomyocyte Conditioning
    (2022) CORTELLA, Lucas R. X.; CESTARI, I. A.; S, M.; MAZZETTO, M.; LASAGNI, A. F.; CESTARI, Ismar N.
    The use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to replace myocardial tissue after an infarct holds great promises. However, hiPSC-CM are phenotypically immature when compared to cells in the adult heart, hampering their clinical application. We aimed to develop and test a surface structuring technique that would improve hiPSC-CM structural maturation. Laser ablation was used to fabricate a micron-pattern on polyurethane surface and evaluated cell morphology, orientation and F-actin assemblage to detect phenotypic changes in response to the microtopography. This topography positively influenced cell morphology regarding to spreading area and elongation, and hiPSC-CM orientation, improving their structural maturation. The methodology thus presented has relatively low cost and is easily scalable, making it relevant for high-throughput applications such as drug screening for the pharma industry.
  • conferenceObject 1 Citação(ões) na Scopus
    Experimental Apparatus for Evaluation of Calcium Fluctuations in Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells
    (2022) ARANA, M. C.; LAHUERTA, R. D.; CORTELLA, L. R. X.; MAZZETTO, M.; SOLDERA, M.; LASAGNI, A. F.; CESTARI, I. N.; CESTARI, I. A.
    In this work, we developed and tested an experimental apparatus to evaluate calcium fluctuations in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CM). The set-up is composed of a signal module for registration and analysis of the signals and a perfusion chamber. This chamber allows the maintenance of the cells, control of perfusion and temperature, and electric stimulation. The signal module consists of a CCD camera attached to a fluorescence microscope with the appropriate software and hardware for eliciting and recording fluorescent signals originating from hiPSC-CM intracellular Ca+2 concentration changes, under electrical stimulation. We employed this system for analysis of calcium fluctuation from hiPSC-CM cultivated on micro textured polyethylene terephthalate surfaces.
  • article 14 Citação(ões) na Scopus
    Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation
    (2017) CORTELLA, L. R. X.; CESTARI, I. A.; GUENTHER, D.; LASAGNI, A. F.; CESTARI, I. N.
    Surface-induced thrombosis and lack of endothelialization are major drawbacks that hamper the widespread application of polyurethanes for the fabrication of implantable cardiovascular devices. Endothelialization of the blood-contacting surfaces of these devices may avoid thrombus formation and may be implemented by strategies that introduce micro and submicron patterns that favor adhesion and growth of endothelial cells. In this study, we used laser radiation to directly introduce topographical patterns in the low micrometer range on castor oil-based polyurethane, which is currently employed to fabricate cardiovascular devices. We have investigated cell adhesion, proliferation, morphology and alignment in response to these topographies. Reported results show that line-like and pillar-like patterns improved adhesion and proliferation rate of cultured endothelial cells. The line-like pattern with 1 mu m groove periodicity was the most efficient to enhance cell adhesion and induced marked polarization and alignment. Our study suggests the viability of using laser radiation to functionalize PU-based implants by the introduction of specific microtopography to facilitate the development of a functional endothelium on target surfaces.