LUCAS RIBEIRO XAVIER CORTELLA

Índice h a partir de 2011
2
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/65, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 5 Citação(ões) na Scopus
    Conditioning of hiPSC-derived cardiomyocytes using surface topography obtained with high throughput technology
    (2021) CORTELLA, Lucas R. X.; CESTARI, Idagene A.; LAHUERTA, Ricardo D.; ARANA, Matheus C.; SOLDERA, Marcos; RANK, Andreas; LASAGNI, Andres F.; CESTARI, Ismar N.
    Surface functionalization of polymers aims to introduce novel properties that favor bioactive responses. We have investigated the possibility of surface functionalization of polyethylene terephthalate (PET) sheets by the combination of laser ablation with hot embossing and the application of such techniques in the field of stem cell research. We investigated the response of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to topography in the low micrometer range. HiPSC-CMs are expected to offer new therapeutic tools for myocardial replacement or regeneration after an infarct or other causes of cardiac tissue loss. However, hiPSC-CMs are phenotypically immature compared to myocytes in the adult myocardium, hampering their clinical application. We aimed to develop and test a high-throughput technique for surface structuring that would improve hiPSC-CMs structural maturation. We used laser ablation with a ps-laser source in combination with nanoimprint lithography to fabricate large areas of homogeneous micron- to submicron line-like pattern with a spatial period of 3 mu m on the PET surface. We evaluated cell morphology, alignment, sarcomeric myofibrils assembly, and calcium transients to evaluate phenotypic changes associated with culturing hiPSC-CMs on functionalized PET. Surface functionalization through hot embossing was able to generate, at low cost, low micrometer features on the PET surface that influenced the hiPSC-CMs phenotype, suggesting improved structural and functional maturation. This technique may be relevant for high-throughput technologies that require conditioning of hiPSC-CMs and may be useful for the production of these cells for drug screening and disease modeling applications with lower costs.
  • article 1 Citação(ões) na Scopus
    Blood cell adhesion to arterial filters analysis by scanning electron microscopy and real-time PCR assay: observational clinical study in cardiac surgery patients
    (2022) GATTO, Chiara Scaglioni Tessmer; PICCIONI, Marilde Albuquerque; STRUNZ, Celia Maria Cassaro; CESTARI, Idagene Aparecida; CUNHA, Ligia Cristina Camara; ROGGERIO, Alessandra; SILVA, Vanessa Monteiro da; ZUCCATO, Maria Cecilia Freire; CORTELLA, Lucas Ribeiro Xavier; KAKOI, Adelia Aparecida Yuka; JATENE, Fabio Biscegli; COSTA JUNIOR, Jose Otavio Auler da; GALAS, Filomena Regina Barbosa Gomes
    Introduction: Arterial filter is the part of the cardiopulmonary bypass circuit where blood cells are exposed to high mechanical stress and where cellular aggregates may fasten in large quantities. The aim of this study was to analyse blood cell adhesiveness in the arterial filter through scanning electron microscopy and real-time PCR assay. Methods: Prospective, clinical and observational study performed on 28 patients undergoing cardiac surgery with cardiopulmonary bypass. Arterial filters were analysed by scanning electron microscopy. Real-time PCR assay was performed in extracted material from the arterial filters for analysis of platelet GPIb and CD45 leucocyte gene expression. Blood coagulation was analysed during cardiopulmonary bypass. Patients were followed until hospital discharge or 28 days after surgery. Results: All studied arterial filters used in the subject patients showed a degree of adhesion from blood elements at scanning electron microscopy. All studied filters were positive for platelets GPIb gene expression and 15% had CD45 leucocyte gene expression. The GPIb platelet gene expression in blood lowered at the end of cardiopulmonary bypass (p = 0.019). There was negative correlation between blood GPIb platelet gene expression and Clot SR (HEPSCREEN2 ReoRox(R)) (rho = 0.635; p = 0.027). The filter fields count was correlated to the D-dimer dosage (rho = 0.828; p < 0.001). Conclusion: There was adhesion of blood elements, especially nucleated platelets, on all arterial filters studied. Although the arterial filter worked as a safety device, that possibly prevented arterial embolisation, it may also have caused greater hyperfibrinolysis during cardiopulmonary bypass.
  • article 14 Citação(ões) na Scopus
    Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation
    (2017) CORTELLA, L. R. X.; CESTARI, I. A.; GUENTHER, D.; LASAGNI, A. F.; CESTARI, I. N.
    Surface-induced thrombosis and lack of endothelialization are major drawbacks that hamper the widespread application of polyurethanes for the fabrication of implantable cardiovascular devices. Endothelialization of the blood-contacting surfaces of these devices may avoid thrombus formation and may be implemented by strategies that introduce micro and submicron patterns that favor adhesion and growth of endothelial cells. In this study, we used laser radiation to directly introduce topographical patterns in the low micrometer range on castor oil-based polyurethane, which is currently employed to fabricate cardiovascular devices. We have investigated cell adhesion, proliferation, morphology and alignment in response to these topographies. Reported results show that line-like and pillar-like patterns improved adhesion and proliferation rate of cultured endothelial cells. The line-like pattern with 1 mu m groove periodicity was the most efficient to enhance cell adhesion and induced marked polarization and alignment. Our study suggests the viability of using laser radiation to functionalize PU-based implants by the introduction of specific microtopography to facilitate the development of a functional endothelium on target surfaces.